高一数学班级姓名11.04第二十课时对数(1)【学习导航】知识网络:学习要求:1.理解对数的概念;2.能够进行对数式与指数式的互化;3.会根据对数的概念求一些特殊的对数式的值。自学评价:1.对数定义:一般地,如果()的次幂等于,即,那么就称是以为底的对数(logarithm),记作,其中,叫做对数的底数(baseoflogarithm),叫做真数(propernumber)。着重理解对数式与指数式之间的相互转化关系,理解,与所表示的是三个量之间的同一个关系。2.对数的性质:(1),(2)(3)这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。3.两种特殊的对数是①常用对数:以10作底简记为②自然对数:以作底(为无理数),=2.71828……,简记为.4.对数恒等式(1)(2)【精典范例】例1:将下列指数式写成对数式:(1);(2);(3);(4).例2:.将下列对数式写成指数式:(1);(2);(3);(4).点评:两题的关键是抓住对数与指数幂的关系进行变换!例3:.求下列各式的值:⑴;⑵;(3);(4);(5)分析:根据对数的概念,将对数式还原成指数式即可得出(1)(2)(3)(5),(4)用对数的恒等式。一个胜利者不会放弃,而一个放弃者永远不会胜利!1底数真数对数对数对数的定义对数与指数的关系关系有关概念对数函数及性质对数的运算性质高一数学班级姓名11.04点评:利用对数恒等式且,,应用此公式时,一定要注意公式的结构,当指数的底和对数的底是同一个数时,能用此公式化简。追踪训练一1.将化为对数式2.将化为指数式3.求值:(1)(2)【选修延伸】一、对数式与指数式关系的应用例4:计算:①②.例5:求x的值:①;②.③点评:本题的关键是根据对数的概念,将对数式还原成指数式,但要注意对数式中底数和真数的取值要求。思维点拔:要明确在对数式与指数式中各自的含义在指数式中,是底数,是指数,是幂;在对数式中,是对数的底数,是真数,是以为底的对数,虽然在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求对数就是求中的指数,也就是确定的多少次幂等于。追踪训练二1.求下列各式中的x的值:⑴logx9=2;⑵lgx2=2;⑶log2[log2(log2x)]=0分层训练:1.下列关于指数式和对数式的变化,不正确的一组是;(1)与(2)与(3)与(4)与2.下列各式中,最大的是(1)(2)(3)(4)3.已知log7[log3(log2x)]=0,那么x=一个胜利者不会放弃,而一个放弃者永远不会胜利!2高一数学班级姓名11.044.计算:(1)(2);(3)=5.①已知,则x=;②已知,则x=.6.①已知,则x=;②已知,则x=.7.若,求的值。一个胜利者不会放弃,而一个放弃者永远不会胜利!3