2.1.2多项式教学目标1.知识与技能:使学生理解多项式、整式的概念,会确定一个多项式的项数和次数.2.过程与方法:通过实例列整式,培养学生分析问题、解决问题的能力.3.情感态度与价值观:培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义.教学重、难点1.重点:多项式以及有关概念.2.难点:准确确定多项式的次数和项.教学过程一、复习提问1.什么叫单项式?举例说明.2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?3.列式表示下列问题:(1)一个数比数x的2倍小3,则这个数为________.(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元.(3)如图1,三角尺的面积为________.(1)(2)(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米.-1-老师出示上述问题,关注学生列式情况,学生小组交流、合作学习.指名学生上黑板列式,然后集体订正。学生思考:上面列出的式子2x-3,3x+5y+2z,ab-r2,x2+2x+18,它们是单项式吗?这些式子有什么共同特点?与单项式有什么关系?2x-3可看作2x与-3的和:3x+5y+2z可以看作单项式3x、5y与2z的和;同样ab-r2看作ab与-r2的和,x2+2x+18可以x2、2x、18的和.二、自主探究请同学们阅读课本第57页有关内容,并回答下列问题.1.几个单项式的和叫做_________;2.在多项式中,每个单项式叫做_________;3.在多项式中,不含字母的项叫做_________;4.在多项式中,_____________________,叫做这个多项式的次数.5.多项式的次数与单项式的次数有什么区别?6.请说出上面各多项式的次数和项.思路点拨:(1)多项式的各项应包括它前面的符号,比如,多项式6x2-x-3中第二项是-x,而不是x,常数项是-3,不是3.多项式没有系数概念,但其每一项均有系数,每一项的系数应包括自己的符号.(2)多项式的次数与单项式的次数概念不同,但又有联系,首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.(3)一个多项式的最高次项可以不唯一,次高项也可以不唯一,如,多项式3x2y-xy2+x2-xy-5中,最高次项为3x2y和-xy2,二次项也有2项,x2和-xy,这个多项式为二次-2-五项式.单项式和多项式统称为整式,例如:100t,6a3,vt,-n,2x-3,3x+5y+2z等都是整式.三、范例学习例1.用多项式填空,并指出它们的项和次数.(1)温度由t℃下降5℃后是_______℃.(2)甲数x的与乙数y的的差可以表示为_________.(3)如课本图2.1-3,圆环的面积为________.(4)如课本图2.1-4,钢管的体积是________.思路点拨:(1)t-5,它的项为t和-5,次数是1;(2)甲数x的表示为x,乙数y的表示为y,它们的差为x-y,它的项为x和-y,次数为1;(3)圆环面积等于大圆面积减去小圆面积,因此圆环面积为R2-r2,它的项是R2-r2,次数是2(是常数是R2的系数).(4)钢管的体积等于大圆柱的体积减去小圆柱的体积,即R2a-r2a,它的项是R2a和-r2a,次数是3.例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、乙两条船在静水中的速度分别是20千米/时和35千米/时,则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少?教师出示例2,并引导学生进行分析:顺水行驶时船的速度=船在静水中的速度+水流速度逆水行驶时船的速度=船在静水中的速度-水流速度这里水流速度为2.5千米/时,如果,我们设船在静水中的速度为v千米/时,那么船在顺水行驶时的速度表示为(v+2.5)千米/时,船在逆水行驶时的速度为(v-2.5)千米/时.当v=20时,则v+2.5=20+2.5=22.5,v-2.4=20-2.5=17.5;当v=35时,则v+2.5=35+2.5=37.5,v-2.5=35-2.5=32.5.因此,甲船顺水行驶的速度是22.5千米/时,逆-3-水行驶的速度为17.5千米/时;乙船顺水行驶的速度是37.5千米/时,逆水行驶的速度为32.5千米/时.四、巩固练习1.下列式子中,哪些是单项式?哪些是多项式?哪些是整式?3x,2x-1,,-ab,-5,-1,3m-4n+m2n.2.课本第59页练习.4.课本第61页...