电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2014高中学科教学设计模版VIP免费

2014高中学科教学设计模版_第1页
1/6
2014高中学科教学设计模版_第2页
2/6
2014高中学科教学设计模版_第3页
3/6
我的教学设计函数的单调性科目高中数学教学对象高一学生课时2课时提供者刘朝辉单位山西省阳城二中一、教学目标1.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数的单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。2.通过函数单调性的学习,让学生通过自主探究活动,体会数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质。3.能够用函数的性质解决生活中简单的实际问题,使学生感受到学习单调性的必要性与重要性,增强学生学习函数的紧迫感,激发其积极性。二、教学内容及模块整体分析《函数的单调性》系人教版高中数学必修一的内容,该内容包括函数的单调性的定义与判断及其证明。在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。三、学情分析按现行新教材结构体系,学生只学过一次函数、二次函数、反比例函数,所以对函数的单调性研究也只能限于这几种函数。依据现有认知结构,学生只能根据函数的图象观察出“随着自变量的增大,函数值增大”的变化趋势,而不能用符号语言进行严密的代数证明,只能依据形的直观性进行感性判断而不能进行“思辩”的理性认识。所以在教学中要找准学生学习思维的“最近发展区”进行有意义的建构教学。比如一次函数中的增和减趋势学生可以判断出函数的增减性,这部分在初中学过,教师可以通过观察学生的状况及时激发学生,在教学过程中,要注意学生第一次接触代数形式的证明,为使学生能迅速掌握代数证明的格式,要注意让学生在内容上紧扣定义贯穿整个学习过程,在形式上要从有意识的模仿逐渐过渡到独立的证明。四、教学策略选择与设计采用师生互动的方式,由以前学过的知识引入新课,让学生先观察图形的基本趋势,首先从行上理解,再引入一个抽象的概念,通过小组合作探究,最后会用定义判定函数的单调性。五、教学重点及难点教学重点:函数的单调性的判断与证明;教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。六、教学过程教师活动学生活动设计意图一、导入新课:利用生活中的实例引出课题,用课件演示和学生一起回忆日常生活中有的上坡和下楼梯的情形,逐渐引申到本节课内容明确学习内容且向学生渗透研究函数问题的一般方法。二、讲授新课:用课件演示对函数图象的增、减情况用几何画板演示,增加直观性、提高学生学习兴趣给出实例:用鼠标拖动红点左右移动,你会发现图像中点的坐标有何变化吗?你能找出其中的规律吗?怎样用数学语言表达函数值的增减变化吗从上推广到一般情况,给出一般图形,要求转化成符号语言,此时提出“单调增函数、单调减函数”两名词;让学生自己总结单调增、减函数的具体定义老师板书:一般地,设函数的定义域为I,区间A1.函数的单调性问题1:在2003年抗击非典型性肺炎时,卫生部门对疫情进行了通报,下图(课件中)是北京市从4月21日至5月19日期间每日新增病例的变化统计图。从图看出,形势从何日开始好转的问题2:一次函数y=kx+b中,当k>0时,y的值随x的值的增大而;当k<0时,y的值随x的值的增大而。思考交流:对于下图(课件中)给出的函数值y随自变量x值的变化情况吗?(移动鼠标到图像上观察会出现y随x值的变化情况)考察学生的观察能力,培养学生的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2014高中学科教学设计模版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部