电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

导数应用:含参函数的单调性讨论

导数应用:含参函数的单调性讨论_第1页
1/5
导数应用:含参函数的单调性讨论_第2页
2/5
导数应用:含参函数的单调性讨论_第3页
3/5
导数应用:含参函数的单调性讨论(一)一、思想方法:讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。二、典例讲解例 1 讨论的单调性,求其单调区间解:的定义域为 (它与同号)I)当时,恒成立,此时在和都是单调增函数,即的增区间是和;II) 当时 此时在和都是单调增函数,在和都是单调减函数,即的增区间为和;的减区间为和.步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。变式练习 1 : 讨论的单调性,求其单调区间 解:的定义域为 (它与同号)I)当时,恒成立,此时在为单调增函数,即的增区间为,不存在减区间;II) 当时 ; 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为. 例 2.讨论的单调性 解:的定义域为 (它与同号)I)当时,恒成立 (此时没有意义) 此时在为单调增函数,即的增区间为II)当时,恒成立,(此时不在定义域内,没有意义)此时在为单调增函数,即的增区间为III)当时, 令于是,当 x 变化时,的变化情况如下表:(结合 g(x)图象定号) x0增↗减↘所以, 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.小结:导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出的零点,再其分区间然后定在相应区间内的符号。一般先讨论无解情况,再讨论解过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 范围扩大而出现有根,但根实际上不在定义域内的),即根据零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。变式练习 2. 讨论的单调性 解:的定义域为 , 它与同号. 令,当时,无解;当时,(另一根不在定义域内舍去) i)当时,恒成立 (此时没有意义) 此时在为单调增函数,即的增区间为ii)当时,恒成立,(此时 方程判别式,方程无解)此时在为单调增函数,即的增区间为iii)当时,当 x 变化时,的变化情况如下表:(结合 g(x)图象定号) x0增↗减↘所以, 此时在为单调增函数,在是单调减函数,即的增区间为;的减区间为.小结:一般最后要综合讨论情况,合并同类的,如 i),ii)可合并为一类结果。 对于二次型函数(如)讨论正负一般先...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

导数应用:含参函数的单调性讨论

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部