宁夏银川贺兰县第四中学 2013-2014 学年高中数学 合情推理教案 新人教版选修 2-2●教学重点:归纳推理及方法的总结。●教学难点:归纳推理的含义及其具体应用。●教具准备:与教材内容相关的资料。●课时安排:1 课时●教学过程:一.问题情境(1)原理初探①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?③探究:他是怎么发现“杠杆原理”的?从而引入两则小典故:(图片展示-阿基米德的灵感)A:一个小孩,为何轻轻松松就能提起一大桶水?B:修筑河堤时,奴隶们是怎样搬运巨石的?正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。④思考:整个过程对你有什么启发?⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。(2)皇冠明珠追逐先辈的足迹,接触数学皇冠上最璀璨的明珠 — “歌德巴赫猜想”。链接:观察猜想证明1归纳推理的发展过程世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于 1690 年,1725 年当选为俄国彼得堡科学院院士。1742 年,哥德巴赫在教学中发现,每个不小于 6 的偶数都是两个素数(只能被和它本身整除的数)之和。如 6=3+3,12=5+7 等等。公元 1742 年 6 月 7 日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6 之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9 之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。欧拉在 6 月 30 日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 3.数学建构●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).注:归纳推理的特点;简言之,归纳推理是由部分到整体、由特殊到一般的推理。●归纳推理的一般步骤:4.师生活动例 1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇、鳄鱼、海...