福建省厦门市集美区灌口中学 2014 年高中数学 3.1.1 方程的根与函数的零点教案 2 新人教版必修 1一、概述本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理。函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴交点的横坐标。由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴交点的横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题,这是函数与方程关系认识的第一步。零点存在性定理,是函数在某区间上存在零点的充分不必要条件。如果函数在区间上的图象是一条连续不断的曲线,并且满足,则函数在区间内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断。定理的逆命题不成立。方程的根与函数零点的研究方法,符合从特殊到一般的认知规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了“数形结合思想”及“转化与化归思想”。方程的根与函数零点的关系研究,不仅为“用二分法求方程的近似解”的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法——“函数与方程思想”的理论基础.可见,函数零点概念在中学数学中具有核心地位。二、教学目标分析数学课程标准强调:“学生要获得必要的数学基础知识和基本技能,理解数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴含的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。”1通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间。1.能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴交点的横坐标以及相应函数零点的关系;2.正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点只能不止一个;3.能利用函数图象和性质判断某些函数的零点个数;4.能顺利将一个方程求解问题转化...