1.4.2 算法案例(2)教学目标:(1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析;(2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序;教学重点:理解辗转相除法与更相减损术求最大公约数的方法教学难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言.教学过程一、问题情境在初中,我们已经学过求最大公约数的知识,你能求出 18 与 30 的公约数吗?我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求 8251 与 6105 的最大公约数?这就是我们这一堂课所要探讨的内容.二、算法设计思想:1.辗转相除法:例 1.求两个正数 8251 和 6105 的最大公约数.(分析:8251 与 6105 两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251=6105×1+2146显然 8251 和的 2146 最大公约数也必是 2146 的约数,同样6105 与 2146 的公约数也必是 8251 的约数,所以 8251 与 6105 的最大公约数也是 6105 与 2146 的最大公约数.6105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0则 37 为 8251 与 6105 的最大公约数.以上我们求最大公约数的方法就是辗转相除法.也叫欧几里德算法,它是由欧几里德在公元前 300 年左右首先提出的.利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数m 除以较小的数n 得到一个商0q 和一个余数0r ;第二步:若00r ,则n 为,m n 的最大公约数;若00r ,则用除数n 除以余数0r 得到一个商1q 和一个余数1r ;第三步:若10r ,则1r 为,m n 的最大公约数;若10r ,则用除数0r 除用心 爱心 专心以余数1r 得到一个商2q 和一个余数2r ;依次计算直至0nr ,此时所得到的1nr 即为所求的最大公约数.练习:利用辗转相除法求两数 4081 与 20723 的最大公约数解:2.更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术.更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母之数,以少减多,更相减损,求其等也,以等数约之.翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶数.若是,用 2 约简;若不是,执行第二步.第二步:以较...