电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

九年级数学《二次函数图象和性质复习》教案苏科版VIP免费

九年级数学《二次函数图象和性质复习》教案苏科版_第1页
1/7
九年级数学《二次函数图象和性质复习》教案苏科版_第2页
2/7
九年级数学《二次函数图象和性质复习》教案苏科版_第3页
3/7
《二次函数图象和性质复习》教案教材的地位和作用:二次函数是在学生学过数、式、方程和函数的基本知识,一次函数的基础上展开的。二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通,二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。它是前面所学知识的应用和提高,又是高中进一步学习数学的基础,另外教学中所渗透的数形结合,从特殊到一般的思想方法对学生今后观察问题,研究问题和解决问题是十分有益的。学情分析:在上本节课前,学生已经通过列表,描点,连线得到具体的二次函数的图象,也分析了已知函数图象的有关性质(如:开口方向,对称轴,顶点坐标,增减性,最值,与坐标轴的交点等)。但对二次函数的一般形式中系数a,b,c,的符号与图象关系并没有形成共识。而二次函数系数与图象的联系在近几年的中考中屡见不鲜。它能考察学生对函数图象意义的理解程度,也能进一步渗透的数形结合,从特殊到一般的思想方法。教学目标:(一)掌握的知识与技能:1、.通过复习,进一步掌握二次函数的有关性质。2、能用二次函数解决简单的实际问题(二)经历的教学思考:1、通过对函数知识的学习,能学会用数学的思想、方法去观察、研究和解决日常生活中所遇到问题等。2、进一步渗透数形结合,从特殊到一般的思想方法。教学重难点::函数知识的综合运用教学方法:自主探究,合作交流教学过程:一、知识点整理:1.小组交流:把二次函数知识点的整理结果在小组内交流,叙述自己的整理思路,从同学的叙述中了解自己的不足。2.推荐两名学生在班内交流。3.展示教师的整理思路。<1>、二次函数的概念:形如的函数.<2>、抛物线的顶点坐标是();对称轴是直线.<3>、当a>0时抛物线的开口向上;当a<0时抛物线的开口向下.越大,抛物线的开口越小;越小,抛物线的开口越大.相同的抛物线,通过平移(或旋转、轴对称)一定能够重合.<4>、a、b同号时抛物线的对称轴在y轴的左侧;a、b异号时抛物线的对称轴在y轴的右侧.抛物线与y轴的交点坐标是(0,C).<5>、二次函数解析式的三种形式:(1)一般式:(2)顶点式:(3)交点式:,抛物线与x轴的交点坐标是()和().<6>、抛物线的平移规律:从到,抓住顶点从(0,0)到(h,k).<7>、(1)当>0时,一元二次方程有两个实数根,抛物线与x轴的交点坐标是A()和B()。(2)当=0时,一元二次方程有两个相等的实数根(或说一个根),抛物线的顶点在x轴上,其坐标是().(3)当<0时,一元二次方程没有实数根,抛物线与x轴没有交点.<8>、二次函数的最值问题和增减性:系数a的符号时,最值增减性a>0最小值时y随x的增大而减小.a<0最大值时y随x的增大而增大.二、结合例题精析,强化练习,剖析知识点1.例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。教师精析点评,二次函数的一般式为y=ax2+bx+c(a≠0)。强调a≠0.而常数b、c可以为0,当b,c同时为0时,抛物线为y=ax2(a≠0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x=0。(1)使是关于x的二次函数,则m2+m-4=2,且m+2≠0,即:m2+m-4=2,m+2≠0,解得;m=2或m=-3,m≠-2(2)抛物线有最低点的条件是它开口向上,即m+2>0,(3)函数有最大值的条件是抛物线开口向下,即m+2<0。抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。强化练习;已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。2。用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。学生活动:小组...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

九年级数学《二次函数图象和性质复习》教案苏科版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部