1.1你能证明它们吗?(2)学习目标:1.进一步了解等腰三角形的性质及判定.2.通过实例体会反证法的含义.3.形成解决问题的一些方法,认识证明是说明一个结论的成立.4.通过学习培养学生乐于观察生活、乐于学习、乐于探索的精神.教法及学法指导:为体现学生在教学中的主体地位,促进学生知识、技能和数学素养的提高,确立本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.课前准备:制作课件.教学过程:一、提出问题,引入新课1、回忆上节课等腰三角形性质.学生回答.2、提出问题.在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?尝试用自己的语言归纳你的发现.你能证明你的结论吗?设计意图:回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力.二、自主探究在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.学生活动中,教师给予适度的引导,可以渐次提出问题:你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.并对这些命题给予多样的证明.如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.求证:BD=CE.证法1: AB=AC,∴∠ABC=∠ACB(等边对等角). ∠1=∠ABC,∠2=∠ABC,∴∠1=∠2.在△BDC和△CEB中,∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)证法2: AB=AC,∴∠ABC=∠ACB. ∠3=∠4.在△ABC和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).在证明过程中,学生思路较为清楚,但严格证明表述经验尚显不足,因此,教学中应注意对证明规范提出一定的要求,请学生板书其中部分证明过程,借助课件展示部分证明过程;可能部分学生还有一些困难,注意对有困难的学生给予帮助和指导.设计意图:让学生再次经历“探索——发现——猜想——证明”的过程,进一步体会证明的必要性,并进行证明,从中进一步体会证明过程,感受证明方法的多样性.三、经典例题变式练习提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:在课本图1—4的等腰三角形ABC中,(1)如果∠ABD=∠ABC,∠ACE=∠ACB呢?由此,你能得到一个什么结论?(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此你得到什么结论?教学中应注意对学生的引导,因为学生先前这样的经验比较少,可能学生一时不知如何研究问题,教师可以引导学生思考:把底角二等份的线段相等.如果是三等份、四等份……结果如何呢?从而引出“议一议”.由于课堂时间有限,如果学生全部解决上述问题,时间不够,可以在引导学生提出上述这些问题的基础上,让学生证明其中部分问题,而将其余问题作为课外作业,延伸到课外;当然,也可以对不同的学生提出不同的要求,如普通学生仅仅证明其中部分问题,而要求部分学优生解决所有的问题,甚至要求这部分学优生思考“还可以提出哪些类似问题你是如何想到这些问题的”.在学生解决问题的基础上,教师还应注意揭示蕴含其中的思想方法.下面是学生的课堂表现:[生]在等腰三角形ABC中,如果∠ABD=∠ABC,那么BD=CE.这和证明等腰三角形两底角的角平分线相等类似.证明如下: AB=AC,∴∠ABC=∠ACB(等边对等角).又 ∠ABD=∠ABC,∴∠ACE=∠ACB,∴∠ABD=∠ACE.在△BDC和△CEB中, ∠ABD=∠ACE,BC=CB,∠ACB=∠ABC,∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)[生]如果在△ABC中,AB=AC,∠...