2.1有理数【学习目标】课标要求:1.在具体情境中,进一步认识负数,理解有理数的意义。2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。目标达成:1、认识负数,理解有理数的意义2、会判断一个数是正数还是负数,能按一定的标准对有理数进行分类学习流程:【课前展示】观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米.教师出示上图,提出问题:(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?(2)你对负数有什么样的认识?(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?【创境激趣】问题:答对答错不回答某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个代表队答题情况如下表:答题情况第一队第二队如果答对题所得的分用正数表示,那么你能用正负数表示每个代表队答题得分的情况1吗?试完成下表:【自学导航】练习:1.把消费价格比上年上涨4.8%记为+4.8%,那么下跌0.6%记为.2.零上温度1℃记为+1℃,零下温度5℃记为.3.生活中你见过其他用负数表示的量吗?与同伴进行交流.【合作探究】议一议你能选定一个高度为标准,用正负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.【展示提升】典例分析知识迁移例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么﹣0.03克表示什么?(3)某大米包装袋上标注着:“净重量:10kg±150g”,这里的“10kg±150g”表示什么?答对题的得分答错题的得分未回答题的得分第一队+6第二队-22【强化训练】我们把正整数、0和负整数统称为整数;正分数和负分数统称为分数。如2是整数,而且是正整数;2/3是分数,而且是正分数,-2是负整数,-2/3是负分数。整数和分数统称为有理数。(1)将学过的数进行分类,并与同伴交流。(2)把下列各数填入相应的集合中:3,-7,32,.6.5,0,418,15,91正数集合:{…}负数集合:{…}整数集合:{…}分数集合:{…}【归纳总结】用一句话“我知道了……我学会了……我还想知道……”小结本课。(先小组同学互相小结,然后小组汇报)【板书设计】【教学反思】数学课程不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的知识和生活经验出发。这就要求数学教学活动必须关注学生的个人知识和生活经验,引入贴近学生生活实际的问题情境。教学中从学生熟悉的海拔高度作为教学起点,让学生在生活实际背景中学习和感受正负数的意义。又通过设计大量具有生活实际背景的练习活动,让学生学会用正负数表示一些具有相反意义的量。再从“明确基准”的活动中,尽可能让学生自己列举生活中正负数应用的实例,体会“基准”的不唯一,进而理解有理数的意义,建立新的数系。教学中创设的问题情景让学生思考、交流、质疑较好地激发学生应用数学思维方法观察和解决生活中的实际问题。尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。如教学中感觉教师启发引导的较多,给学生自主探索思考的空间较少。这样不利于学生思维的发展,不利于学生主体作用的发挥。34