数学:4.1.2《同角三角函数的基本关系》教案(旧人教版高一下)【同步教育信息】一.本周教学内容:同角三角函数的基本关系式二.重点、难点:本节重点是同角三角函数的基本关系式1.平方关系:1cossin22,22sectan1,22csccot12.商数关系:sincoscot,cossintan3.倒数关系:1cscsin,1seccos,1cottan【典型例题】[例1]已知mtan,求的其它三角函数值。解:依题意不在y轴上,即2k,Zk,若在x轴上,则0sin,0tan,1cos,cot,1sec与csc不存在。若是第一或第四象限角,则221tan1secmmm1tan1cot,11sec1cos221costansinmmmm21csc若是第二或第三象限角,则221tan1secm211sec1cosmm1tan1cot用心爱心专心21costansinmmmm21csc注:已知一个角的某一个三角函数值求该角其它三角函数值时,一般先以与已知角有平方关系的函数为准将四个象限分成两大类,再利用商数关系和倒数关系求出该角的其它三角函数值。[例2]mcossin,试求(1)33cossin;(2)44cossin;(3)55cossin;(4)66cossin;(5)设nnnfcossin)(,试用)1(nf和)(nf表示)1(nf。解:由mcossin,则21cossin2m(1)33cossin)cossincos)(sincos(sin22)3(21)211(22mmmm(2)44cossin)21(21])21(21[])cos(sin21[]cossin2)cos[(sin4222222222mmm(3)55cossin)5(41)21()3(21)cos(sincossincossincossincossin)cos)(sincos(sin4222223323323322mmmmmm(4)66cossin用心爱心专心=)cossincos)(sincos(sin224422)361(41)21(31cossin31422222mmm(5)由nnnfcossin)(,则)cos(sin)cos(sin)1()(nnfnf)1(21)1()cos(sincossincossin21111nfmnfnnnn故)1(21)()1(2nfmnmfnf[例3]已知a2424sinsincoscos,求证1sinsincoscos2424。证法一:设a2sin,)1,0(sin2bab于是ba1cos,1cos22由已知11)1(22baba即)1()1()21(22bbabaab0)(2ba,得ba于是2424sinsincoscos11)1(1)1(2222aaaaabab证法二:由已知去分母得222424cossincossinsincos222424cos)cos1(cossin)cos1(cos用心爱心专心0coscos2coscos0cos]1)cos1([coscoscoscoscos)sin(coscoscos42244224244244240)cos(cos22222coscos则22sinsin故24242424sinsincoscossinsincoscos1sincos22证法三:将上式化简得222424sincoscossinsincos即)cos(sinsincoscossinsincos22222424)sin(sincossin)cos(cossincos22222222又由2222sinsincoscos,则222424sincoscossinsincos1sinsincoscos2424[例4]若CxBCxAsinsincos,sincoscos,求证;2sinsinsin222CBA。证法一:当0sinC时0cosA,1sinA,1sin,0cosBB此时,2011sinsinsin222CBA当0sinC时CBxCAxsincossin,sincoscos于是1sincossincossincos222222xxCBCA即CBA222sincoscos2sinsinsin222CBA用心爱心专心证法二:将已知二式两边平方,有CxA222sincoscosCxB222sinsincosCxA222sincossin1CxB222sinsinsin1故CxCxBA222222sinsinsincos)sin1()sin1()sin(cossin222xxCC2sin所以2sinsinsin222CBA[例5]已知cos2sin...