§2.2.1综合法和分析法一、教学目标:(一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。(二)过程与方法:培养学生的辨析能力和分析问题和解决问题的能力;(三)情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。二、教学重点:了解分析法和综合法的思考过程、特点三、教学难点:分析法和综合法的思考过程、特点四、教学过程:(一)导入新课:合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。数学结论的正确性必须通过逻辑推理的方式加以证明。本节我们将学习两类基本的证明方法:直接证明与间接证明。(二)推进新课:1.综合法在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论。例如:已知a,b>0,求证2222()()4abcbcaabc教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。教师最后归结证明方法。学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义证明:因为222,0bcbca,所以22()2abcabc。因为222,0caacb,所以22()2bcaabc。因此2222()()4abcbcaabc。一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法。用P表示已知条件、已有的定义、定理、公理等,Q表示要证明的结论,则综合法可表示为:用心爱心专心111223().....nPQQQQQQQ综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。例1、在△ABC中,三个内角A,B,C的对边分别为,,abc,且A,B,C成等差数列,,,abc成等比数列,求证△ABC为等边三角形.分析:将A,B,C成等差数列,转化为符号语言就是2B=A+C;A,B,C为△ABC的内角,这是一个隐含条件,明确表示出来是A+B+C=;a,b,c成等比数列,转化为符号语言就是2bac.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由A,B,C成等差数列,有2B=A+C.①因为A,B,C为△ABC的内角,所以A+B+C=.②由①②,得B=3.③由a,b,c成等比数列,有2bac.④由余弦定理及③,可得222222cosbacacBacac.再由④,得22acacac.即2()0ac,因此ac.从而A=C.由②③⑤,得A=B=C=3.所以△ABC为等边三角形.注:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来.例2、已知,,Rba求证.abbababa分析:本题可以尝试使用差值比较和商值比较两种方法进行。证明:1)差值比较法:注意到要证的不等式关于ba,对称,不妨设.0ba0)(0bababbabbabababababa,从而原不等式得证。用心爱心专心22)商值比较法:设,0ba,0,1baba.1)(baabbabababa故原不等式得证。注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。2.分析法证明数学命题时,还经常从要证的结论Q出发,反推回去,寻求保证Q成立的条件,即使Q成立的充分条件P1,为了证明P1成立,再去寻求P1成立的充分条件P2,为了证明P2成立,再去寻求P2成立的充分条件P3,……直到找到一个明显成立的条件(已知条件、定理、定义、公理等)为止。例如:基本不等式abba2(a>0,b>0)的证明就用了上述方法。要证abba2,只需证abba2,只需证02abba,只需证0)(2ba由于0)(2ba显然成立,因此原不等式成立。一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。这种方法叫做分析法。分析法可表示为:1121().....()nnnQPPPPPPP...