电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 1.1.3导数的几何意义教案 新人教A版选修2-2VIP免费

高中数学 1.1.3导数的几何意义教案 新人教A版选修2-2_第1页
高中数学 1.1.3导数的几何意义教案 新人教A版选修2-2_第2页
高中数学 1.1.3导数的几何意义教案 新人教A版选修2-2_第3页
1.1.3导数的几何意义教学目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;教学难点:导数的几何意义.教学过程:一.创设情景(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数0()fx的几何意义是什么呢?二.新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)nnnPxfxn沿着曲线()fx趋近于点00(,())Pxfx时,割线nPP的变化趋势是什么?我们发现,当点nP沿着曲线无限接近点P即Δx→0时,割线nPP趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.用心爱心专心1图3.1-2问题:⑴割线nPP的斜率nk与切线PT的斜率k有什么关系?⑵切线PT的斜率k为多少?容易知道,割线nPP的斜率是00()()nnnfxfxkxx,当点nP沿着曲线无限接近点P时,nk无限趋近于切线PT的斜率k,即0000()()lim()xfxxfxkfxx说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质—函数在0xx处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.(二)导数的几何意义:函数y=f(x)在x=x0处的导数等于在该点00(,())xfx处的切线的斜率,即0000()()()limxfxxfxfxkx说明:求曲线在某点处的切线方程的基本步骤:①求出P点的坐标;②求出函数在点0x处的变化率0000()()()limxfxxfxfxkx,得到曲线在点00(,())xfx的切线的斜率;③利用点斜式求切线方程.(二)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时,0()fx是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:()fx或y,即:0()()()limxfxxfxfxyx注:在不致发生混淆时,导函数也简称导数.(三)函数()fx在点0x处的导数0()fx、导函数()fx、导数之间的区别与联系。(1)函数在一点处的导数0()fx,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数(3)函数()fx在点0x处的导数'0()fx就是导函数()fx在0xx处的函数值,这也是求函数用心爱心专心2在点0x处的导数的方法之一。三.典例分析例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.(2)求函数y=3x2在点(1,3)处的导数.解:(1)222100[(1)1](11)2|limlim2xxxxxxyxx,所以,所求切线的斜率为2,因此,所求的切线方程为22(1)yx即20xy(2)因为222211113313(1)|limlimlim3(1)611xxxxxxyxxx所以,所求切线的斜率为6,因此,所求的切线方程为36(1)yx即630xy(2)求函数f(x)=xx2在1x附近的平均变化率,并求出在该点处的导数.解:xxxxxy32)1()1(2200(1)(1)2(1)limlim(3)3xxyxxfxxx例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数2()4.96.510hxxx,根据图像,请描述、比较曲线()ht在0t、1t、2t附近的变化情况.解:我们用曲线()ht在0t、1t、2t处的切线,刻画曲线()ht在上述三个时刻附近的变化情况.(1)当0tt时,曲线()ht在0t处的切线0l平行于x轴,所以,在0tt附近曲线比较平坦,几乎没有升降.(2)当1tt时,曲线()ht在1t处的切线1l的斜率1()0ht,所以,在1tt附近曲线下降,即函数2()4.96.510hxxx在1tt附近单调递减.用心爱心专心3(3)当2tt时,曲线()ht在2t处的切...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

星河书苑+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部