电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

223实际问题与二次函数(第3课时)VIP免费

223实际问题与二次函数(第3课时)_第1页
1/14
223实际问题与二次函数(第3课时)_第2页
2/14
223实际问题与二次函数(第3课时)_第3页
3/14
xy0实际问题与二次函数(三)yxo蜀河初中黄广明活动一创设情境问题引导问题一:有一桥洞为抛物线形的拱桥,这个桥洞的最大高度为16cm,跨度40cm,现在把它的图形放在坐标系中,如图所示,若跨度中心点M左右5m处各垂直竖立一根铁柱支撑拱桥,则铁柱有多高?NyxoM40PNyxoM40P问题二:如图是抛物线形拱桥,当水面在L时,拱桥离水面2米,水面宽4米。水面下降1米,水面宽度增加多少米?活动二自学展示思考:一.①从题目自身条件,你能联想到用什么数学知识来解决?②在此基础上我们需要建立______,即可求出这条抛物线表示的函数关系式。二.你有几种建系的方法?水面下降1米水面宽度为多少??活动二自学展示yxoyxoxy0活动二自学展示解一解二解三图中是抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?l继续活动三合作探究反馈交流解一以抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系,如图所示.y∴可设这条抛物线所表示的二次函数的解析式为:2axy当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)22a25.0a∴这条抛物线所表示的二次函数为:2x5.0y当水面下降1m时,水面的纵坐标为y=-3,这时有:2x5.036xm62这时水面宽度为∴当水面下降1m时,水面宽度增加了m)462(返回解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)22a025.0a∴这条抛物线所表示的二次函数为:2x5.0y2当水面下降1m时,水面的纵坐标为y=-1,这时有:2x5.0126xm62这时水面宽度为∴当水面下降1m时,水面宽度增加了m)462(∴可设这条抛物线所表示的二次函数的解析式为:2axy2此时,抛物线的顶点为(0,2)返回解三如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:2)2x(ay2∵抛物线过点(0,0)2)2(a025.0a∴这条抛物线所表示的二次函数为:2)2x(5.0y2当水面下降1m时,水面的纵坐标为y=-1,这时有:2)2x(5.01262x,62x21m62xx12∴当水面下降1m时,水面宽度增加了m)462(此时,抛物线的顶点为(2,2)∴这时水面的宽度为:返回学.科.网例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.活动四当堂训练拓展应用解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为4.4axy2∵抛物线过A(-2,0)04.4a41.1a∴抛物线所表示的二次函数为4.4x1.1y27.2816.24.42.11.1y2.1x2时,当∴汽车能顺利经过大门.活动五课堂小结㈠生活当中的拱桥、喷出的水柱、投篮时篮球的运动路线等等都成抛物线形,因此我们可以用二次函数的知识来解决此类相关问题。㈡解决此类抛物线实际问题的一般步骤:①建立适当的直角坐标系。②求抛物线的解析式。③根据函数解析式和已知量求相关的量。㈢一定要注意适当建“系”,方便解题。在本节课有什么收获?2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.①问此球能否投中?1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.(选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?课后练习学.科.网

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

223实际问题与二次函数(第3课时)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部