备战数学应考能力大提升典型例题例1已知a,b,c是互不相等的实数.求证:由y=ax2+2bx+c,y=bx2+2cx+a和y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.证明:假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点(即任何一条抛物线与x轴没有两个不同的交点),由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b,得Δ1=(2b)2-4ac≤0,Δ2=(2c)2-4ab≤0,Δ3=(2a)2-4bc≤0.上述三个同向不等式相加得,4b2+4c2+4a2-4ac-4ab-4bc≤0,∴2a2+2b2+2c2-2ab-2bc-2ca≤0,∴(a-b)2+(b-c)2+(c-a)2≤0,∴a=b=c,这与题设a,b,c互不相等矛盾,因此假设不成立,从而命题得证.例2已知a>0,->1,求证:>.【证明】证法一:由已知->1及a>0,可知b>0,要证>,可证·>1,即证1+a-b-ab>1,这只需证a-b-ab>0,即>1,即->1,而这正是已知条件,以上各步均可逆推,所以原不等式得证.证法二:->1及a>0,可知1>b>0,∵->1,∴a-b-ab>0,1+a-b-ab>1,(1+a)(1-b)>1.由a>0,1-b>0,得·>1,即>.创新题型1.如图,已知两个正方形ABCD和DCEF不在同一平面内,M、N分别为AB、DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.答案解:(1)取CD的中点G,连结MG、NG.设正方形ABCD、DCEF的边长为2,则MG⊥CD,MG=2,NG=.因为平面ABCD⊥平面DCEF,所以MG⊥平面DCEF.可得∠MNG是MN与平面DCEF所成的角.因为MN=,所以sin∠MNG=为MN与平面DCEF所成角的正弦值.(2)证明:假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN.由已知,两正方形不共面,故AB⊄平面DCEF.又AB∥CD,所以AB∥平面DCEF.而EN为平面MBEN与平面DCEF的交线,所以AB∥EN.又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾,故假设不成立.所以ME与BN不共面,它们是异面直线.