直角三角形全等的判定知识结构重点与难点分析:本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下(1)由“先教后学”转向“先学后教本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。(2)在层次教学中培养学生的思维能力本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。教法建议:由“先教后学”转向“先学后教”本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。(2)在层次教学中培养学生的思维能力本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。教学目标1、了解直角三角形是特殊的三角形,除具有一般三角形的全等的判定方法外,还具有特殊的全等判定方法;2、能证明直角三角形全等的“HL”判定定理;3、了解特殊的直角三角形(一个角是30°)具有一般具有一般直角三角形所没有的特殊性质;4、学生逐步学会分析的思考方法,发展演绎推理的能力。教学重点1、证明直角三角形全等的“HL”判定定理,体会拼拆的构造方法,运用此法证明直角三角形全等;2、学习分析的思考方法,发展演绎推理的能力。教学难点拼合的方法证明“HL”定理。教学方法自主学习,合作探究教学程序设计一、创设情境问题一:直角三角形全等的条件有哪些?一般三角形全等的判定方法可以判定直角三角形全等,由于直角三角形是特殊的三角形,所以还有一般三角形所没有的特殊性的判定方法。问题二:你认为具备这样条件的两个直角三角形一定全等吗?为什么?即,斜边和一条直角边对应相等的两个直角三角形全等吗?二、探索活动1、用操作的方法证实你的猜想(按条件作一个直角三角形,然后相互比较是否一样,合情推理)。2、如何证明你的结论引导学生根据命题画出图形写出已知、求证已知:如图,在△ABC和△A’B’C’中,∠ACB=∠A’C’B’=90°,AB=A’B’,AC=A’C’,求证:△ABC≌△A’B’C’AABCBC分析:上节课我们是用什么方法来证明等腰三角形的性质和判定的(把等腰三角形拆分成两个直角三角形,然后证它们全等),那么我们现在根据这两个直角三角形的具备的条件,可以考虑怎样证明它们全等?(把两个直角三角形拼合成一个等腰三角形,再运用等腰三角形的性质)引导学生分析证题思路,并完成证明过成。概括直角三角形全等的判定“HL”定理三、拓展延伸由上图,如果∠BAC=∠B’A’C’=30°,那么△ABB’是什么三角形?△ABC(或△A’...