第1讲平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μ__a;λ(a+b)=λa+λb3.两个向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.导师提醒1.注意几个特殊向量(1)要注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们大小相等,但方向不一定相同.(3)任一组平行向量都可以平移到同一直线上,因此平行向量也叫作共线向量.(4)与向量a平行的单位向量有两个,即向量和-.2.识记五个常用结论(1)一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A1A2+A2A3+A3A4+…+An-1An=A1An.特别地,一个封闭图形首尾连接而成的向量和为零向量.(2)若P为线段AB的中点,O为平面内任意一点,则OP=(OA+OB).(3)若A,B,C是平面内不共线的三点,则PA+PB+PC=0⇔P为△ABC的重心.(4)在△ABC中,AD,BE,CF分别为三角形三边上的中线,它们交于点G(如图所示),易知G为△ABC的重心,则有如下结论:①GA+GB+GC=0;②AG=(AB+AC);③GD=(GB+GC),GD=(AB+AC).(5)若OA=λOB+μOC(λ,μ为常数),则A,B,C三点共线的充要条件是λ+μ=1.判断正误(正确的打“√”,错误的打“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.()(2)零向量与任意向量平行.()(3)若a∥b,b∥c,则a∥c.()(4)若向量AB与向量CD是共线向量,则A,B,C,D四点在一条直线上.()(5)当两个非零向量a,b共线时,一定有b=λa,反之成立.()(6)在△ABC中,D是BC的中点,则AD=(AB+AC).()答案:(1)×(2)√(3)×(4)×(5)√(6)√(教材习题改编)如图,▱ABCD的对角线交于M,若AB=a,AD=b,用a,b表示MD为()A.a+bB.a-bC.-a-bD.-a+b解析:选D.MD=BD=(b-a)=-a+b,故选D.设D为△ABC所在平面内一点,BC=3CD,则()A.AD=-AB+ACB.AD=AB-ACC.AD=AB+ACD.AD=AB-AC解析:选A.由题意得AD=AC+CD=AC+BC=AC+AC-AB=-AB+AC.(教材习题改编)化简:(1)(AB+MB)+BO+OM=________.(2)NQ+QP+MN-MP=________.解析:(1)(AB+MB)+BO+OM=(AB+BO)+(OM+MB)=AO+OB=AB.(2)NQ+QP+MN-MP=NP+PN=0.答案:(1)AB(2)0已知a与b是两个不共线向量,且向量a+λb与-(b-3a)共线,则λ=________.解析:由题意知存在k∈R,使得a+λb=k[-(b-3a)],所以解得答案:-平面向量的有关概念(自主练透)1.判断下列四个命题:①若a∥b,则a=b;②若|a|=|b|,则a=b;③若|a|=|b|,则a∥b;④若a=b,则|a|=|b|.其中正确的个数是()A.1B.2C.3D.4解析:选A.只有④正确.2.设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0B.1C.2D.3解析:选D.向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.3.设a,b都是非零向量,下列四个条件中,使=成立的充分条件是()A.a=-bB.a∥bC.a=2bD.a∥b且|a|=|b|解析:选C.因为向量的方向与向量a相同,向量的方向与向量b相同,且=,所以向量a与向量b方向相同,故可排除选项A,B,D.当a=2b时,==,故a...