正弦、余弦函数的图象正弦、余弦函数的图象xyoP(x,y)1-11-1M的终边A(1,0)TsincostanMPOMATRR定义域三角函数sincostan{|,}2kkZ正弦函数的图象问题:如何作出正弦函数的图象?途径:利用单位圆中正弦线来解决。y=sinxx[0,2]O1Oyx33234352-11y=sinxxR终边相同角的三角函数值相等即:sin(x+2k)=sinx,kZ)()2(xfkxf描图:用光滑曲线将这些正弦线的终点连结起来利用图象平移AB正弦函数的图象x6yo--12345-2-3-41y=sinxx[0,2]y=sinxxR正弦曲线yxo1-122322x6yo--12345-2-3-41余弦函数的图象余弦函数的图象正弦函数的图象x6yo--12345-2-3-41y=cosx=sin(x+),xR2余弦曲线正弦曲线形状完全一样只是位置不同2oxy---11--13232656734233561126sin[0,2]yxx在函数的图象上,起关键作用的点有:sin,[0,2]yxx最高点:最低点:与x轴的交点:(0,0)(,0)(2,0))1,(23)1,2(在精度要求不高的情况下,我们可以利用这5个点画出函数的简图,一般把这种画图方法叫“五点法”。-oxy---11--13232656734233561126cos[0,2]yxx在函数的图象上,起关键作用的点有:cos,[0,2]yxx最高点:最低点:与x轴的交点:(0,1)3(,0)2(2,1)(,1)(,0)2正弦、余弦函数的图象例1画出函数y=1+sinx,x[0,2]的简图:xsinx1+sinx22302010-1012101o1yx22322-12y=sinx,x[0,2]y=1+sinx,x[0,2]步骤:1.列表2.描点3.连线正弦、余弦函数的图象例2画出函数y=-cosx,x[0,2]的简图:xcosx-cosx2230210-101-1010-1yxo1-122322y=-cosx,x[0,2]y=cosx,x[0,2]正弦、余弦函数的图象xsinx22302010-10练习:在同一坐标系内,用五点法分别画出函数y=sinx,x[0,2]和y=cosx,x[,]的简图:223o1yx22322-12y=sinx,x[0,2]y=cosx,x[,]223向左平移个单位长度2xcosx100-1022302正弦、余弦函数的图象正弦、余弦函数的图象小结1.正弦曲线、余弦曲线几何画法五点法2.注意与诱导公式、三角函数线等知识的联系yxo1-122322y=sinx,x[0,2]y=cosx,x[0,2]作业:课本46A1思考题:你能从正余弦函数图象中分析出的正余弦函数的那些性质。练习:(1)作函数y=1+3cosx,x[0,2π]∈的简图(2)作函数y=2sinx-1,x[0,2π]∈的简图(1)yx