电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用)高考数学 考点一遍过 专题24 数列的综合应用(含解析)理-人教版高三全册数学试题VIP免费

(全国通用)高考数学 考点一遍过 专题24 数列的综合应用(含解析)理-人教版高三全册数学试题_第1页
1/30
(全国通用)高考数学 考点一遍过 专题24 数列的综合应用(含解析)理-人教版高三全册数学试题_第2页
2/30
(全国通用)高考数学 考点一遍过 专题24 数列的综合应用(含解析)理-人教版高三全册数学试题_第3页
3/30
专题24数列的综合应用能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n项和;分析等差、等比数列项之间的关系,往往用到转化与化归的思想方法.考向一等差、等比数列的综合应用解决等差数列与等比数列的综合问题,关键是理清两个数列的关系,(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.典例1已知等差数列满足=2,前3项和=.(1)求的通项公式;(2)设等比数列满足=,=,求的前n项和.(2)由(1)得.设的公比为q,则,从而.故的前n项和.典例2已知等比数列的公比为.(1)若,求数列的前项和;(2)证明:对任意,成等差数列.1.已知等差数列的前项和为,且,在等比数列中,.(1)求及;(2)设数列的前项和为,求.考向二数列与函数、不等式等的综合应用1.数列可看做是自变量为正整数的一类函数,数列的通项公式相当于函数的解析式,所以我们可以用函数的观点来研究数列.解决数列与函数综合问题的注意点:(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.(2)转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.2.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:(1)判断数列问题中的一些不等关系;(2)以数列为载体,考查不等式的恒成立问题;(3)考查与数列问题有关的不等式的证明问题.在解决这些问题时,要充分利用数列自身的特点,例如在需要用到数列的单调性的时候,可以通过比较相邻两项的大小进行判断.在与不等式的证明相结合时,注意构造函数,结合函数的单调性来证明不等式.典例3已知数列满足=.(1)求证:数列是等比数列;(2)若恒成立,求实数的取值范围.又因为,所以,故数列是以为首项,为公比的等比数列.(2)由(1)知,所以,令,则=,所以当时,,故为减函数.而,因为恒成立,所以.所以实数的取值范围为.典例4已知函数满足且.(1)当时,求的表达式;(2)设,,求证:…;(3)设,,为的前项和,当最大时,求的值.∴得,∴,即.(3)由(1)可得,∴数列是一个首项是4,公差为的等差数列,∴当时,;当时,;当时,.故当或时,取得最大值,为.2.设公差不为零的等差数列的前项的和为,且成等比数列.(1)求数列的通项公式.(2)设数列,求证:数列的前项和.考向三等差、等比数列的实际应用1.数列实际应用中的常见模型①等差模型:增加或减少的量是一个固定的常数,是公差;②等比模型:后一个量与前一个量的比是一个固定的常数,是公比;③递推数列模型:题目中给出的前后两项之间的关系不固定,随项的变化而变化,由此列递推关系式.2.解答数列实际应用题的步骤①审题:仔细阅读题干,认真理解题意;②建模:将已知条件翻译成数学语言,将实际问题转化为数学问题;③求解:求出该问题的数学解;④还原:将所求结果还原到实际问题中.在实际问题中建立数学模型时,一般有两种途径:①从特例入手,归纳猜想,再推广到一般结论;②从一般入手,找到递推关系,再进行求解.典例5某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年比上一年增加4万美元,每年销售蔬菜收入50万美元,设f(n)表示前n年的纯利润(f(n)=前n年的总收入-前n年的总支出-投资额).(1)从第几年开始获得纯利润?(2)若五年后,该台商为开发新项目,决定出售该厂,现有两种方案:①年平均利润最大时,以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂.问哪种方案较合算?故此方案获利6×16+48=144万美元,此时n=6.②f(n)=-2n2+40n-72=-2(n-10)2+128,当n=10时,f(n)max=128.故此方案共获利128+16=144万...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用)高考数学 考点一遍过 专题24 数列的综合应用(含解析)理-人教版高三全册数学试题

您可能关注的文档

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部