圆的方程圆的标准方程什么样的点集叫做圆?一、建立圆的标准方程 求圆心C( a ,b ),半径是 r 的圆的方程。 如图(1),设 M(x ,y ) 是圆上任意一点,根据定义,点M到圆心C的距离等于 r ,所以圆C就是集合 P={M||MC|= r } 点M适合的条件可表示为 22()()x ay b= r ① 平面上到定点距离等于定长的点的集合(轨迹)是圆。定点就是圆心,定长就是半径。crMyox图⑴ ①式两边平方,得 方程②就是圆心为 C (a ,b ), 半径为 r 的圆的方程,我们把它叫做圆的标准方程。 特别的,如果圆心在原点,这时 ,那么 圆的方程是222yxr0,0ba 二、圆的标准方程的应用例 1 写出下列各圆的方程:⑴ 圆心在原点,半径是3;⑵ 圆心在点 ,半径是 ;⑶ 经过点 ,圆心在点 。4,3C51,5P3,8 C②222()()x ay br答:⑴229yx ⑵22(3)(4)5xy⑶22(8)(3)25xy点评:⑶中,可先用两点距离公式求圆的半径,或设 ,用待定系数法求解。 22283xyr例2 说出下列圆的圆心坐标和半径长: 22;324xy⑴ 22;427xy⑵22116.yx ⑶解: 圆与直线 相切,0743yx23 1 4 37162543dr ∴ 圆的方程为 222562513xy∴ 圆心 到 的距离 3,1C0743yx例3 求以 为圆心,并且和直线 相切的圆的方程。0743yx 3,1C答:⑴圆心 半径为 2 ; ),2,3( ⑶ 圆心 半径为 4),1,0( ⑵ 圆心 半径为),2,4(;7例 4 已知圆 O 的方程为 ,判断下面的点在圆内、圆上、还是圆外? 22114xy 1,1A1,0B0,3CA解:① ,∴点 在圆上; 221 11 14② ,∴点 在圆内;B 220 11 11 4③ ,∴点 在圆外。 220 13 154C⑵, P 在圆上, 22200()()byarx, P 在圆外, ⑴22200()()byarx, P 在圆内。 ⑶22200()()byarx小结:与圆的关系判断:),(00 yxP222()()x ay br例5 已知隧道的截面是半径是 4m 的半圆,车辆只能在道路的中心线一侧行驶,一辆宽为 2.7m ,高为 3m 的货车能不能驶入这个隧道?解:如图⑵,设切线的斜率 ,半径 OM 的斜率为 ,因为圆的切线垂直于...