公开课教案课题:解直角三角形授课人:孟芳君时间:2014.12.12班级:九年(2)班 【教学目标】1.知识与技能:了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形;2.过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,学生了解体会用化归的思想方法将未知问题转化为已知问题去解决;3.情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。【教学重点、难点】1.重点:直角三角形的解法。2.难点:三角函数在解直角三角形中的灵活运用。【课堂教学过程设计】一.前置性作业1、什么叫解直角三角形?2、在直角三角形 ABC 中,∠C=90°,a、b、c、∠A、∠B 这五个元素之间有哪些等量关系呢?(1)边角之间关系: sinA=_ cosA=_ tanA= _ (2)三边之间关系:勾股定理_______ (3)锐角之间关系:________。 3、直角三角形可解的条件:知除直角个的 个条件(其中至少有 ),即可解直角三角形。4、在 Rt△ABC 中,∠C=90°,AB=13,AC=12,求∠A 的各个三角函数值。5、自述 30°、45°、60°角的正弦、余弦、正切值。二.你有哪些疑问?小组交流讨论。三.例 1、在 Rt△ABC 中,∠C=90°,已知 c=15,∠B=60°,求 a.2、在 Rt△ABC 中,∠C=90°,已知∠A=45°,b=3,求 c.3、在 Rt△ABC 中,∠C=90°,由下列条件解直角三角形:已知 a=5, b=生甲:如果不是特殊值,怎样求角的度数呢?生乙:我想知道已知哪些条件能解出直角三角形?◆师:你有什么看法?生乙:从课前预习看,知道了特殊的一边一角也能解,那么两边呢?两角呢?还有三边、三角呢?◆ 师:好!这位同学不但提的问题非常好,而且具有非凡的观察力,那么他的意见对不对?这正是这一节我们要来探究和解决的:怎样解直角三角形以及解直角三角形所需的条件。◆ 师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的问题了,这节课我们就来学习“解直角三角形”,解决同学们的疑问。设计意图:数学知识是环环相扣的,课前预习能让学生为接下来的学习作很好的铺垫和自然的过渡。带着他们的疑问来学习解直角三角形,去探索解直角三角形的条件,激发了他们研究的兴趣和探究的激情。【探究新知】 例 1、在 Rt△ABC 中,∠C=90°,由下列条件解直角三...