2.2 等差数列教材分析三维目标一、知识与技能1.理解等差数列的概念及其性质;了解通项公式的推导过程;2.掌握通项公式.二、过程与方法1.通过对等差数列通项公式的推导培养学生的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识.教学重点 理解等差数列的概念,探索并掌握等差数列的通项公式,会用公式解决一些简单的问题.教学难点 (1)等差数列的性质,等差数列“等差”特点的理解、把握和应用;(2)概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式. 教学建议 本节课先在具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,并能通过通项公式与图象认识等差数列的性质.可见本课内容的安排旨在培养学生的观察分析、归纳猜想、应用能力.结合本节课特点,宜采用指导自主学习方法,即学生主动观察——分析概括——师生互动,形成概念——启发引导,演绎结论——拓展开放,巩固提高.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在教学过程中,遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.创设问题情境,引起学生学习兴趣,激发他们的求知欲,培养学生由特殊到一般的认知能力.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.新课导入一师 上两节课我们学习了数列的定义以及给出数列和表示 数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本 P41页的 4 个例子)(1)0,5,10,15,20,25,…;(2)48,53,58,63,…;(3)18,15.5,13,10.5,8,5.5…;(4)10 072,10 144,10 216,10 288,10 366,….请你们来写出上述四个数列的第 7 项.生 第一个数列的第 7 项为 30,第二个数列的第 7 项为 78,第三个数列的第 7 项为 3,第四个数列的第 7 项为 10 510.师 我来问一下,你依据什么写出了这四个数列的第 7 项呢?以第二个数列为例来说一说.生 这是由第 二个数列的后一项...