统计、抽样方法一、教学目标1.随机抽样。2.用样本估计总体。3.变量的相关性。二、知识提要1.抽样当总体中的个体较少时,一般可用简单随机抽样;当总体中的个体较多时,一般可用系统抽样;当总体由差异明显的几部分组成时,一般可用分层抽样,而简单随机抽样作为一种最简单的抽样方法,又在其中处于一种非常重要的地位.实施简单随机抽样,主要有两种方法:抽签法和随机数表法.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样就显得不方便,系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均匀分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等概率抽样.分层抽样在内容上与系统抽样是平行的,在每一层进行抽样时,采用简单随机抽样或系统抽样,分层抽样也是等概率抽样.2.样本与总体用样本估计总体是研究统计问题的一种思想方法.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图,当总体中的个体取不同值较多,甚至无限时,其频率分布的研究要用到初中学过的整理样本数据的知识.用样本估计总体,除在整体上用样本的频率分布去估计总体的分布以外,还可以从特征数上进行估计,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差)去估计总体的方差(标准差).3.正态分布正态分布在实际生产、生活中有着广泛的应用,很多变量,如测量的误差、产品的尺寸等服从或近似服从正态分布,利用正态分布的有关性质可以对产品进行假设检验.4.线性回归直线设 x、y 是具有相关关系的两个变量,且相应于 n 组观察值的 n 个点大致分布在一条直线的附近,我们把整体上这 n 个点最接近的一条直线叫线性回归直线.三、基础训练1.一个总体中共有 10 个个体,用简单随机抽样的方法从中抽取一容量为 3 的样本,则某特定个体入样的概率是( )A.B.C.D. 2.(2004 年江苏,6)某校为了了解学生的课外阅读情况,随机调查了 50 名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这 50 名学生这一天平均每人的课外阅读时间为( )1A.0.6 hB.0.9 hC.1.0 hD.1.5 h3.如果随机变量 ξ~N(μ,σ2),且 Eξ=3,Dξ=1,则 P(-1<ξ≤1)等于( )A.2Φ(1)-1 B.Φ(4)-Φ(2)C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)4..为考虑广告费用 x 与销售...