江苏省苏州市第五中学 2014—2015 学年高中数学 指数函数(3)导学案 新人教版必修 1【学习目标】1 了解指数函数模型在实际中的应用,2 体会增长率模型是一种非常重要的函数模型;3 复习指数函数【课前预习】1、截止到 1999 年底,我国人口约 13 亿,如果今后能将人口平均增长率 控制在 1%,那么经过年我国人口数为多少?到 2019 年底,我国人口约为多少?(参考数据,,,计算结果精确到亿。)2、一种产品的年产量原来是 500 件,在今后 m 年内,计划使年产量平均每年比上一年增加 r%,则年产量随经过年数变化的函数关系式为 。【课堂研讨】 例 1、某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的%,写出这种物质的剩留量关于时间的函数关系式。 例 2、某种储蓄按复利计算,若本金为元,每期利率为,设存期是,本利和(本金加上利息)为元。(1)写出本利和随存期变化的函数关系式;(2)如果存入本金 1000 元,每期利率为%,计算 5 期后的本利和,按这样的利率,第几期后的本利和,开始超过本金的 1.5 倍?;(3)要使 10 期后的本利和翻一番,利率应为多少(精确到 0.001)?( 参 考 数 据 :,,,)例 3、2000 年到 2002 年,我国国内生产总值年平均增长%左右,按照这个增长速度,画出从 2000 年开始我国年国内生产总值 随时间变化的图象,并通过图象观察到2010 年我国年国内生产总值约为 2000 年的多少倍(结果取整数)。( 参 考 数 据 :,,,,,,)【教后反思】指数函数(3)检测案 班级: 姓名: 学号: 【课堂检测】1、一个电子元件厂去年生产某种规格的电子元件个,计划从今年开始的年内,每年生产此种规格的电子元件的产量比上一年增长,则此种规格的电子元件的年产量随年数变化的函数关系是 。2、一个电子元件厂去年生产某种规格的电子元件的成本是元/个,计划从今年开始的年内,每年生产此种规格的电子元件的成本比上一年下降,则此种规格的电子元件的单件成本随年数变化的函数关系是 。3、某种商品零售价 2004 年比 2003 年上涨 25%,现 要求 2005 年比 2003 年只上涨10%,则 2005 年比 2004 年应降价__________________。4、某工厂的产值月平均增长率为 r,则 年平均增长率是________________________。【课后巩固】1、某种细菌在繁殖过程中,每 20 分钟分裂一次(一个分裂成 两个),经过 3 个小时,这种细...