专题 04 圆与方程一、学习目标1、通过复习帮助同学们系统掌握本章知识;2、通过习题帮助同学们熟悉相关知识在解题中的应用。二、知识梳理1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程222rbyax,圆心ba,,半径为 r;(2)一般方程022FEyDxyx当0422FED时,方程表示圆,此时圆心为2,2ED,半径为FEDr42122当0422FED时,表示一个点; 当0422FED时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r;若利用一般方程,需要求出 D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线0:CByAxl,圆222:rbyaxC,圆心 baC,到 l 的距离为22BACBbAad,则有相离与Clrd;相切与Clrd;相交与Clrd(2)设直线0:CByAxl,圆222:rbyaxC,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为 ,则有相离与Cl0;相切与Cl0;相交与Cl0注:如果圆心的位置在原点,可使用公式200ryyxx去解直线与圆相切的问题,其中00, yx表示切点坐标,r表示半径。 (3)过圆上一点的切线方程: ① 圆 x2+y2=r2,圆上一点为(x0,y0),则过此点的切线方程为200ryyxx (课本命题). ② 圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广).4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆221211 :rbyaxC,222222 :RbyaxC两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当rRd时两圆外离,此时有公切线四条;当rRd时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当rRdrR时两圆相交,连心线垂直平分公共弦,有两条外公切线;当rRd时,两圆内切,连心线经过切点,只有一条公切线;当rRd时,两圆内含; 当0d时,为同心圆。5、空间直角坐标系1(1)定义:...