专题探究课六高考导航 1.概率与统计是高考中相对独立的一块内容,处理问题的方式、方法体现了较高的思维含量.该类问题以应用题为载体,注重考查学生的应用意识及阅读理解能力、化归转化能力;2.概率问题的核心是概率计算.其中事件的互斥、对立、独立是概率计算的核心,排列组合是进行概率计算的工具.统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征;3.离散型随机变量的分布列及其期望的考查是历来高考的重点,难度多为中低档类题目,特别是与统计内容的渗透,背景新颖,充分体现了概率与统计的工具性和交汇性.热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题形式考查,求解的关键在于找准测度(面积、体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例 1】 (2017·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布 N(μ,σ2).(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求 P(X≥1)及 X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得=i=9.97,s==≈0.212,其中 xi 为抽取的第 i 个零件的尺寸,i=1,2,…,16.用样本平均数作为 μ 的估计值μ,用样本标准差 s 作为 σ 的估计值σ,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ-3σ,μ+3σ)之外的数据,用剩下的数据估计 μ 和 σ(精确到 0.01).附:若随机变量 Z 服从正态分布 N(μ,σ2),则 P(μ-3σ