课题:坐标系中的轴对称【学习目标】1.明确图形坐标变化与图形轴对称之间的关系;2.经历图形坐标变化与图形轴对称之间关系的探索过程,培养探索研究问题的能力.【学习重点】图形坐标变化与图形轴对称之间的关系.【学习难点】图形坐标变化规律的运用.行为提示:创景设疑,帮助学生知道本节课学什么.说明:求关于坐标轴对称的两个图形的对应点坐标问题时,必须熟记关于x、y轴对称的点的坐标关系,可用口诀巧记:横轴横不变,纵轴纵不变.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.方法指导:变例中根据横坐标与纵坐标在对称中相同或相反,列出方程组解答.情景导入生成问题旧知回顾:1.什么是轴对称图形?答:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形.2.什么是轴对称?轴对称的性质是什么?答:平面内两个图形在一条直线两旁,如果沿着这条直线折叠,这两个图形能够重合,那么这两个图形成轴对称.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线,反过来,成轴对称的两个图形,对应点连线被对称轴垂直平分.自学互研生成能力阅读教材P123~P124的内容,回答下列问题:关于x轴对称的两点坐标有何关系?关于y轴对称的两点坐标有何关系?答:关于x轴对称点的坐标特点:横坐标相同,纵坐标相反.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).关于y轴对称点的坐标特点:横坐标相反,纵坐标相同.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).范例1:在平面直角坐标系中,点P(-2,3)关于x轴的对称点在(C)A.第一象限B.第二象限C.第三象限D.第四象限范例2:已知点A(3,4),点A关于X轴对称的对称点A′的坐标为(B)A.(3,4)B.(3,-4)C.(-3,-4)D.(4,3)范例3:(2015·岳阳中考)已知P点关于x轴的对称点为P1,P1关于y轴的对称点为P2,已知P2的坐标为(5,-3),则点P的坐标为(B)A.(5,3)B.(-5,3)C.(-5,-3)D.(5,-3)范例4:点(a,b)与点(-a,b)关于y轴对称.变例:已知两点M(2a-b,2b),N(3,a).(1)若点M、点N关于x轴对称,求a、b的值;(2)若点M、点N关于y轴对称,求(a-b)2015的值.解:(1)解得(2)解得说明:作图后学生应观察是否关于某直线对称.行为提示:找出自己不明白的问题,先对学,再群学.充分在小组内展示自己,对照答案,提出疑惑,小组内讨论解决.小组解决不了的问题,写在各小组展示的黑板上,在小组展示的时候解决.积极发表自己的不同看法和解法,大胆质疑,认真倾听.做每一步运算时都要自觉地注意有理有据.阅读教材P123~P124页的内容,回答下列问题:作关于x轴(或y轴)对称的图形有哪些步骤?答:一、先写出图形的各个顶点关于x轴(或y轴)对称点的坐标;二、在坐标系内描点;三、连接成图形.范例:如图所示,已知四边形ABCD,你能画出它关于y轴对称的图形吗?它的对应顶点的坐标是怎样变化的?答:能;如图所示,四边形A′B′C′D′便是四边形ABCD关于y轴对称的图形.四边形ABCD的四个顶点的坐标分别为A(0,5),B(2,0),C(4,3),D(2,2),四边形A′B′C′D′的四个顶点的坐标分别为A′(0,5),B′(-2,0),C′(-4,3),D′(-2,2),即对应顶点的横坐标为相反数,纵坐标相等.仿例1:(2015·海南中考)如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为(B)A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)仿例2:如图,四边形ABCD的四个顶点的坐标分别为A(4,4),B(2,4),C(1,1),D(4,2),分别作出与四边形ABCD关于y轴和x轴对称的图形.解:如图交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一关于x轴或y轴对称的点知识模块二作关于x轴或y轴对称的图形检测反馈达成目标【当堂检测】见所赠光盘和学生用书【课后检测】见学生...