电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

秋八年级数学上册 1.1 探索勾股定理 第2课时 验证勾股定理教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案VIP免费

秋八年级数学上册 1.1 探索勾股定理 第2课时 验证勾股定理教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案_第1页
1/5
秋八年级数学上册 1.1 探索勾股定理 第2课时 验证勾股定理教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案_第2页
2/5
秋八年级数学上册 1.1 探索勾股定理 第2课时 验证勾股定理教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案_第3页
3/5
1.1探索勾股定理第2课时验证勾股定理第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容:活动1:教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);22图1(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×ab+c2.并得到)从而利用图1验证了勾股定理.活动3:自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm,且两直角边长度比为3:4,求两直角边的长。意图:在前面已经讨论了直角三角形三边满足的关系,那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a,b,c不满足a2+b2=c2。通过这个结论,学生将对直角三角形三边的关系有进一步的认识,并为后续直角三角形的判别打下基础。_b_a_a_c_b_c第四环节:例题讲解初步应用内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.第五环节:追溯历史激发情感活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

秋八年级数学上册 1.1 探索勾股定理 第2课时 验证勾股定理教案2 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部