电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

秋八年级数学上册 第12章 一次函数 12.2 一次函数 第5课时 一次函数与一元一次方程、一元一次不等式教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案VIP免费

秋八年级数学上册 第12章 一次函数 12.2 一次函数 第5课时 一次函数与一元一次方程、一元一次不等式教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案_第1页
1/3
秋八年级数学上册 第12章 一次函数 12.2 一次函数 第5课时 一次函数与一元一次方程、一元一次不等式教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案_第2页
2/3
秋八年级数学上册 第12章 一次函数 12.2 一次函数 第5课时 一次函数与一元一次方程、一元一次不等式教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案_第3页
3/3
第5课时一次函数与一元一次方程、一元一次不等式◇教学目标◇【知识与技能】1.理解一次函数与一元一次方程、一元一次不等式之间的关系;2.会利用一次函数图象解决相关的一元一次不等式.【过程与方法】通过探究一次函数图象与一元一次方程、一元一次不等式之间的关系,体会数形结合思想.【情感、态度与价值观】1.通过实例探究,培养学生深入探究的学习精神;2.通过一次函数与一元一次方程、一元一次不等式之间的关系的探究,使学生对所学知识进行融会贯通,深化对数形结合思想的理解.◇教学重难点◇【教学重点】探究一次函数图象与一元一次方程、一元一次不等式之间的关系.【教学难点】利用一次函数图象,解一元一次方程与一元一次不等式.◇教学过程◇一、情境导入看下面两个问题:(1)解方程2x+20=0;(2)当自变量x为何值时,函数y=2x+20的值为0?这两个问题之间有什么联系吗?二、合作探究在上面问题(1)中,解方程2x+20=0,得x=-10.解决问题(2)就是要考虑当函数y=2x+20的值为0时所对应的自变量x为何值,这可以通过解方程2x+20=0,得出x=-10.因此这两个问题实质上是一个问题.从函数图象上看,直线y=2x+20与x轴交点的坐标为(-10,0),这也说明函数y=2x+20的值为0时,对应的自变量x为-10,即方程2x+20=0的解是x=-10.由上面两个问题的关系,归纳概括出解一元一次方程与求自变量x为何值时,一次函数y=kx+b的值为0有什么关系?【归纳小结】因为任何一个一元一次方程都可转化为kx+b=0的形式,所以解一元一次方程kx+b=0,都可转化为求一次函数y=kx+b(k,b为常数,且k≠0)中y=0时的x值.从图象上看,就是求直线y=kx+b与x轴交点的横坐标.问题:根据图象说出一元一次不等式2x+20>0和2x+20<0的解集?结论:2x+20>0,就是函数y=2x+20中y>0,观察知,图象在x轴上方时,它上面的点的纵坐标y>0,同样地,图象在x轴下方时,它上面的点的纵坐标y<0,因为图象与x轴交于(-10,0),所以由图象可知,要使y>0,即2x+20>0,应有x>-10,要使y<0,即2x+20<0,应有x<-10.【归纳小结】因为任何一个一元一次不等式都可以转化为kx+b>0或kx+b<0的形式,所以解一元一次不等式kx+b>0或kx+b<0就是求y=kx+b取正值或负值时x的取值范围.典例作出函数y=2x-5的图象,观察图象回答下列问题:(1)求不等式2x-5>0的解集;(2)求不等式2x-5<0的解集;(3)求不等式2x-5>3的解集.[解析]作出一次函数y=2x-5的图象,如图所示.(1)不等式2x-5>0的解集为x>2.5.(2)不等式2x-5<0的解集为x<2.5.(3)不等式2x-5>3的解集为x>4.三、板书设计一次函数与一元一次方程、一元一次不等式1.一次函数与一元一次方程、一元一次不等式的内在联系.2.内在联系在图象上的反映.◇教学反思◇让学生用数形结合的方法探索并归纳一次函数的图象与一元一次方程、一元一次不等式的关系,一元一次方程、一元一次不等式的图象解法,使学生初步认识它们之间的关联.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

秋八年级数学上册 第12章 一次函数 12.2 一次函数 第5课时 一次函数与一元一次方程、一元一次不等式教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部