阶段质量检测(十)统计、统计案例(时间120分钟,满分150分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列关系中,是相关关系的为()①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.①②B.①③C.②③D.②④解析:学生的学习成绩与学生的学习态度和教师的执教水平是相关的,与学生的身高和家庭经济条件不相关.答案:A2.(2010·合肥模拟)现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样解析:①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样.答案:A3.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.57.2,3.6B.57.2,56.4C.62.8,63.6D.62.8,3.6解析:平均数增加60,即为62.8.方差=(ai+60)-(+60)]2=(ai-)2=3.6.答案:D4.为了考察两个变量x、y之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l1和l2.已知在两人的试验中发现变量x的观测数据的平均值恰好相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是()A.直线l1,l2有交点(s,t)B.直线l1,l2相交,但是交点未必是(s,t)C.直线l1,l2由于斜率相等,所以必定平行D.直线l1,l2必定重合解析:由y=bx+a,a=-b可知,当x=时,y=,故回归方程过定点(,).所以回归直线l1过点(s,t),回归直线l2也过点(s,t),所以l1与l2有交点(s,t).答案:A5.某篮球运动员在一个赛季的40场比赛中得分的茎叶图如图所示,则中位数与众数分别为()A.3与3B.23与3C.3与23D.23与23解析:众数是23,排列数据得中位数也是23.答案:D6.某校对高三年级的学生进行体检,现将高三男生的体重(kg)数据进行整理后分成五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65kg属于偏胖,低于55kg属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为()A.1000,0.50B.800,0.50C.800,0.60D.1000,0.60解析:据题意得第二小组的频率为1-(0.25+0.20+0.10+0.05)=0.4,且其频数为400,设高三年级男生总数为n,则有=0.4,∴n=1000,体重正常的学生所占的频率为第二和第三小组频率之和,即0.2+0.4=0.6.答案:D7.甲、乙两名同学在五次考试中数学成绩统计用茎叶图表示如右图所示,则下列说法正确的是()A.甲的平均成绩比乙的平均成绩高B.甲的平均成绩比乙的平均成绩低C.甲成绩的方差比乙成绩的方差大D.甲成绩的方差比乙成绩的方差小解析:由图可知甲的五次成绩分别为99,98,105,118,115,则可得甲成绩的平均数为107,方差为66.8;乙的五次成绩分别为95,106,108,112,114,则可得乙的平均成绩为107,方差为44.答案:C8.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3-5x,变量x增加一个单位时,y平均增加5个单位;③曲线上的点与该点的坐标之间具有相关关系;④在一个2×2的列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是90%.其中错误的个数是()A.1B.2C.3D.4解析:根据方差的计算公式,可知①正确,...