黑龙江省绥化市重点中学2015届高考数学二模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.B.C.D.(﹣∞,1]∪6.阅读如图所示的程序框图,运行相应的程序,若输出的S为,则判断框中填写的内容可以是()A.n=6B.n<6C.n≤6D.n≤87.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为()A.B.64C.D.8.在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是()A.2B.8C.14D.169.已知直线y=2(x﹣1)与抛物线C:y2=4x交于A,B两点,点M(﹣1,m),若•=0,则m=()1A.B.C.D.010.对定义在上,并且同时满足以下两个条件的函数f(x)称为M函数:(i)对任意的x∈,恒有f(x)≥0;(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列四个函数中不是M函数的个数是()①f(x)=x2②f(x)=x2+1③f(x)=ln(x2+1)④f(x)=2x﹣1.A.1B.2C.3D.411.已知双曲线=1(a>0,b>0)与函数y=的图象交于点P,若函数y=的图象在点P处的切线过双曲线左焦点F(﹣1,0),则双曲线的离心率是()A.B.C.D.12.若对∀x,y∈22.如图所示,AB为圆O的直径,CB,CD为圆O的切线,B,D为切点.(1)求证:AD∥OC;(2)若圆O的半径为2,求AD•OC的值.23.在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.24.(1)已知a,b都是正数,且a≠b,求证:a3+b3>a2b+ab2;(2)已知a,b,c都是正数,求证:≥abc.2黑龙江省绥化市重点中学2015届高考数学二模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.B.C.D.(﹣∞,1]∪.故选C.点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.设复数z=1+i(i是虚数单位),则+z2=()A.1+iB.1﹣iC.﹣1﹣iD.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、共轭复数的定义即可得出.解答:解: 复数z=1+i,∴z2=2i,则+z2===1﹣i+2i=1+i,故选:A.点评:本题考查了复数的运算法则、共轭复数的定义,属于基础题,3.已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以,从而求得cos=,根据向量夹角的范围即可得出向量的夹角.解答:解: ;;∴;∴;∴向量与的夹角为.3故选B.点评:考查非零向量垂直的充要条件,数量积的计算公式,以及向量夹角的范围.4.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=4,则△ABC的面积为()A.B.1C.D.2考点:余弦定理.专题:解三角形.分析:由已知及余弦定理可求cosA,从而可求sinA的值,结合已知由三角形面积公式即可得解.解答:解: a2=b2+c2﹣bc,∴由余弦定理可得:cosA===,又0<A<π,∴可得A=60°,sinA=, bc=4,∴S△ABC=bcsinA==.故选:C.点评:本题主要考查了余弦定理,三角形面积公式的应用,解题时要注意角范围的讨论,属于基本知识的考查.5.已知a∈{﹣2,0,1,3,4},b∈{1,2},则函数f(x)=(a2﹣2)x+b为增函数的概率是()A.B.C.D.考点:几何概型.专题:概率与统计.分析:首先求出所以事件个数就是集合元素个数5,然后求出满足使函数为增函数的元素个数为3,利用公式可得.解答:解:从集合{﹣2,0,1,3,4}中任选一个数有5种选法,使函数f(x)=(a2﹣2)x+b为增函数的是a2﹣2>0解得a>或者a<,所以满足此条件的a有﹣2,3,4共有3个,由古典概型公式得函数f(x)=(a2﹣2)x+b为增函数的概率是;故选:B.点评:本题考...