江苏省仪征中学2016—2017学年度高三10月限时训练数学试卷(附加题)21.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.22.若的展开式中项的系数为20,求的最小值。23.设为随机变量,从侧面均是等边三角形的正四棱锥的8条棱中任选两条,为这两条棱所成的角(规定平行的棱所成的角为0).(1)求概率;(2)求的分布列,并求其数学期望E().24.已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.(Ⅰ)求的方程;(Ⅱ)若直线,且和有且只有一个公共点,(ⅰ)证明直线过定点,并求出定点坐标;(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.参考答案21.解:设特征向量为α=对应的特征值为λ,则=λ,即因为k≠0,所以a=2.………………5分因为A-1=,所以A=,即=,所以2+k=3,解得k=1.综上,a=2,k=1.……10分22、23、解:(1)从正四棱锥的8条棱中任选两条,共有种不同方法,其中“”包含了两类情形:①从底面正方形的4条棱中任选两条相邻的棱,共有4种不同方法;②从4条侧棱中选两条,共有2种不同方法,所以;……4分(2)依题意,的所有可能取值为0,,,“”包含了从底面正方形的4条棱中任选两条对棱,共2种不同方法;所以;……6分从而,……8分所以的分布列为:数学期望E().……10分24、解析:(I)由题意知,设,则FD的中点为,因为,由抛物线的定义知:,解得或(舍去).由,解得.所以抛物线C的方程为.(II)(ⅰ)由(I)知,设,因为,则,由得,故,故直线AB的斜率为,因为直线和直线AB平行,设直线的方程为,代入抛物线方程得,由题意,得.设,则,.当时,,可得直线AE的方程为,由,整理可得,直线AE恒过点.当时,直线AE的方程为,过点,所以直线AE过定点.(ⅱ)由(ⅰ)知,直线AE过焦点,所以,设直线AE的方程为,因为点在直线AE上,故,设,直线AB的方程为,由于,可得,代入抛物线方程得,所以,可求得,,所以点B到直线AE的距离为.则的面积,当且仅当即时等号成立.所以的面积的最小值为16.