流程图(三)教学目标:使学生了解循环结构的特点,并能解决一些与此有关的问题.教学重点:循环结构的特性.教学难点:循环结构的运用.教学过程:Ⅰ.课题导入问题:给出求满足1+2+3+4+…+>2008最小正整数的一种算法,并画出流程图.我的思路:在解题的时候经常会遇到需要重复处理一类相同的事或类似的操作,如此题就需要重复地做加法运算.如果用逐一相加算法,步骤太多,采用循环结构可以很好地解决此类问题.算法如下:S1n←1;S2T←0;S3T←T+n;S4如果T>2008,输出n,结束.否则使n的值增加1重新执行S3,S4.流程图如下:Ⅱ.讲授新课循环结构分为两种——当型(while型)和直到型(until型).当型循环在执行循环体前对控制循环条件进行判断,当条件满足时反复做,不满足时停止;直到型循环在执行了一次循环体之后,对控制循环条件进行判断,当条件不满足时反复做,满足时停止.例1:求1×2×3×4×5×6×7,试设计不同的算法并画出流程图.算法1算法2用心爱心专心开始输出X结束X1X×2XX×3XX×4XX×5XX×6XX×7X开始输出X结束X1I2XI×XI+1II>7是否点评:本题主要考查学生对顺序结构和循环结构的理解,学会推理分析.算法都可以由顺序结构、选择结构和循环结构这三块“积木”通过组合和嵌套来完成.算法2具有通用性、简明性.流程图可以帮助我们更方便直观地表示这三种基本的算法结构.例2:有一光滑斜面与水平桌面成α角,设有一质点在t=0时,从此斜面的顶点A处开始由静止状态自由释放,如下图所示.如果忽略摩擦力,斜面的长度S=300cm,α=65°.求t=0.1,0.2,0.3,…,1.0s时质点的速度.试画出流程图.解析:从物理学知识知道:质点在斜面上运动时,它的加速度a=gsinα.当在水平面上运动时,速度为常数,且保持它在B点时的速度.从A点到B点间的速度v,可由公式v=at=g(sinα)t求出,到B点时的速度vB为vB=at=aaS2=aS2=2Sg·sinα.解题的过程是这样考虑的:按公式v=at=g(sinα)t,求t=0.1,0.2,0.3……时的速度v,每求出对应于一个t的v值后,即将v与vB相比较,如果v<vB,表示质点还未到达B点,使t再增加0.1s,再求下一个t时的v值,直到v≥vB时,此时表示已越过B点,此后的速度始终等于vB的值.流程图如下:用心爱心专心开始S300,a650,t0.1vBBB=2sinSg.v=(sin)gtvv<是是是否否否输出,tv输出,tvt>1t>1结束tt+1tt+1例3:设y为年份,按照历法的规定,如果y为闰年,那么或者y能被4整除不能被100整除,或者y能被400整除.对于给定的年份y,要确定它是否为闰年,如何设计算法,画出流程图.解析:输入y结束开始4整除?y是是是否否否100整除?y输出不是闰年y400整除?y输出是闰年y总结:1.理解程序框图的三种基本逻辑结构:顺序结构、选择结构、循环结构.算法的表示方法:(1)用自然语言表示算法.(2)用传统流程图表示算法.2.能够理解和掌握构成流程图的符号:⑤流程线①起止框④输入、输出框②处理框③判断框⑥连接点3.利用计算机进行数值计算,需要经过以下几个步骤:(1)提出问题、分析问题.(2)确定处理方案,建立数学模型,即找出处理此顺题的数学方法,列出有关方程式.(3)确定操作步骤,写出流程图算法见下图.(4)根据操作步骤编写源程序.(5)将计算机程序输入计算机并运行程序.(6)整理输出结果.用心爱心专心以上过程可用流程图表示如下:提出问题确定数学模型和计算方法画流程图编写程序运行程序修改程序有无错误有无结束Ⅲ.课堂练习课本P141,2.Ⅳ.课时小结循环结构的特点:在程序执行过程中,一条或多条语句被重复执行多次(包括0次),执行的次数由循环条件确定.Ⅴ.课后作业课本P147,8,9.练习1.算法的三种基本结构是()A.顺序结构、选择结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D.流程结构、分支结构、循环结构答案:A2.流程图中表示判断框的是()A.矩形框B.菱形框C.圆形框D.椭圆形框答案:B3.下面是求解一元二次方程ax2+bx+c=0(a≠0)的流程图,请在空缺的地方填上适当的标注.输入,,abcYN结束开始(1)(2)(3)输出“方程无实根”bac-42答案:(1)Δ<0(2)x1←aΔb2,x2←aΔb2(3)输出x1,x24.下面流程...