用样本的频率分布估计总体频率分布教学目标:通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,批注教学重点:熟练地对y=sinx进行振幅和周期变换奎屯王新敞新疆教学难点:体会用样本估计总体的思想,会用样本的频率分布估计总体分布教学用具:投影仪教学方法:类比、观察、交流、讨论、迁移教学过程:一、复习准备:1.讨论:绘制频率分布直方图有哪几个步骤呢?2.练习:给出一个频率分布直方图,进行一些分析.(如何表示频率?面积和?集中范围?变化趋势?)二、讲授新课:1、教学频率分布折线图及茎叶图:①定义频率分布折线图:画好频率分布图后,我们把频率分布直方图中各小长方形上端连接起来,得到的图形.②定义总体密度曲线:在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.注:频率折线图是随着样本而变化的,因此并不能由频率折线图得到准确的总体密度曲线.当样本容量不断增加,分组的组距不断缩小,频率分布折线图会越来越接近一条光滑的曲线即总体密度曲线,它由(a,b)的阴影部分的面积,直观反映总体在范围(a,b)内取值的百分比.③讨论:对于任何一个总体,它的密度曲线是不是一定存在?它的密度曲线是否可以被非常准确地画出来?(实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.)④提问:目前有哪些方式可以发现样本的规律?(分布表、直方图、折线图都能帮助发现样本数据的规律)⑤定义茎叶图:当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.⑥出示例:试将下列两组数据制作出茎叶图.甲得分:13,51,23,8,26,38,16,33,14,25,39,乙得分:49,24,12,31,60,31,44,36,15,37,25,36,39,⑦讨论:用茎叶图处理样本数据有何好处,什么时候用茎叶图会比较方使?(茎叶图不仅能够保留原始数据,数据可以随时记录,随时添加,方便记录,而且能够展示数据的分布情况,但其仅适用于样本数据较少时,否则枝叶会太长.茎叶图中数据的茎和叶的划分,可根据数据的特点灵活地决定.)2、练习:教材P61第3题.3、小结:不易知一个总体的分布情况时,往往从总体中抽取一个样本,用样本的频率分布去估计总体的频率分布,样本容量越大,估计就越精确.目前有:频率分布表、直方图、茎叶图.三、巩固练习:练习:试制作本班男同学身高的茎叶图.四、作业:P721、2题,只作图.教学后记:课题:用样本的数字特征估计总体数字特征(一)第______课时总序第______个教案课型:新授课编写时间:____年___月___日执行时间:___年___月___日教学目标:正确理解样本数据分布直方图的意义和作用,从样本频率分布直方图中提取基本的数字特征(如众数、中位数、平均数),并做出合理的解释.会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.批注教学重点:从样本频率分布直方图中提取基本的数字特征(如众数、中位数、平均数).教学难点:对比初中所学众数、中位数、平均数的概念.教学用具:三角板教学方法:类比、观察、交流、讨论、迁移1教学过程:一、复习准备:1.提问:作样本频率分布直方图的基本步骤是怎样的?2.讨论:如何通过样本的频率分布直方图分析出一些规律?(给出一个图,试着分析)3.已知数据:10,11,12,12,13,13,13,14,15,根据初中所学的知识,试求中位数、众数、平均数.复习:初中学习的中位数、众数、平均数概念?(样本众数:样本观测值中出现次数最多的数;样本中位数:将一组数据从按大小依次排列,处在最中间...