电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第1章 三角函数 7 7.3 正切函数的诱导公式(教师用书)教案 北师大版必修4-北师大版高二必修4数学教案VIP免费

高中数学 第1章 三角函数 7 7.3 正切函数的诱导公式(教师用书)教案 北师大版必修4-北师大版高二必修4数学教案_第1页
1/5
高中数学 第1章 三角函数 7 7.3 正切函数的诱导公式(教师用书)教案 北师大版必修4-北师大版高二必修4数学教案_第2页
2/5
高中数学 第1章 三角函数 7 7.3 正切函数的诱导公式(教师用书)教案 北师大版必修4-北师大版高二必修4数学教案_第3页
3/5
7.3正切函数的诱导公式学习目标核心素养1.借助单位圆中的三角函数线推导出正切函数的诱导公式.2.掌握正切函数的诱导公式.1.通过推导诱导公式,培养逻辑推理素养.2.通过运用正切函数的诱导公式解决问题,提升数学运算素养.正切函数的诱导公式角x函数y=tanx记忆口诀kπ+α(k∈Z)tanα函数名不变,符号看象限-α-tanαπ-α-tanαπ+αtanα+α-cotα函数名改变,符号看象限-αcotα思考:前面我们学习过π±α,-α,±α,2π±α等的正弦、余弦的诱导公式,并总结出“奇变偶不变,符号看象限”的记忆口诀.对正切函数能适用吗?[提示]因为tanα=,所以口诀对正切函数依然适用.1.公式tan(π-α)=-tanα成立的条件是()A.α为锐角B.α为不等于的任意角C.α为任意角D.α≠kπ+(k∈Z)D[由正切函数的定义可知α≠kπ+(k∈Z).]2.下列诱导公式中错误的是()A.tan(π-α)=-tanαB.cos=sinαC.sin(π+α)=-sinαD.cos(π-α)=-cosα[答案]B3.tan等于()A.-cotαB.cotαC.tanαD.-tanα[答案]A4.tan的值为()A.B.-C.D.-D[tan=tan=-tan=-.]三角函数间关系的应用【例1】已知角α的顶点在原点,始边与x轴的非负半轴重合,终边经过点P(3,y),且tanα=-.(1)求sinα+cosα的值;(2)求的值.[解](1)因为tanα==-,所以y=-4,则r=5.∴sinα=-,cosα=,则sinα+cosα=-.(2)原式=====-10.三角函数之间关系的应用利用三个三角函数之间的关系:tanα=进行弦切互化;正用可以做到切化弦,逆用可以做到弦化切.1.已知α为第二象限角,且tanα-=,求的值.[解]由tanα-=,得4tan2α-15tanα-4=0,得tanα=-或tanα=4.又α为第二象限的角,所以tanα=-.故===.利用诱导公式求值【例2】求下列各式的值:(1)tan;(2)tan10°+tan170°+sin1866°-sin(-606°).[思路探究]利用诱导公式化为锐角三角函数,再求值.[解](1)tan=-tan=-tan=-tan=tan=.(2)原式=tan10°+tan(180°-10°)+sin1866°-sin(-606°)=tan10°-tan10°+sin(5×360°+66°)-sin[(-2)×360°+114°]=sin66°-sin66°=0.利用诱导公式求值一般为:把负角三角函数化为正角三角函数,再化为0~2π间的三角函数,最后转化为锐角三角函数求值.2.求下列三角函数的值:(1)tan150°;(2)tan.[解](1)tan150°=tan=-tan30°=-.(2)tan=-tan=-tan=-tan=-tan=-.利用诱导公式化简与证明[探究问题]1.与正切函数有关的式子求值时应注意什么问题?[提示]求含有正切函数关系式的某个函数的定义域时,要注意正切函数值存在的条件.求值域时,不要忽视这个函数的定义域.2.利用正切函数的诱导公式解决给角求值的解题流程是怎样的?[提示]【例3】(1)化简:;(2)求值:.[思路探究]解答本题可依据先用周期性或关于-α的诱导公式,把角绝对值“化小”,再利用恰当的公式化简.[解](1)原式===-cosα.(2)原式====2-.1.将例3(1)变为“已知tan(3π-α)=,求的值”.[解]因为tan(3π-α)=tan(-α)=-tanα=,所以tanα=-.原式===-tanα=.2.将例3(2)变为“若a=”,试求a2+a+1的值.[解]a=====1,∴a2+a+1=1+1+1=3.1.三角函数式化简的常用方法(1)依据所给式子合理选用诱导公式将所给角的三角函数转化为角α的三角函数.(2)切化弦:一般需将表达式中的切函数转化为弦函数.2.三角恒等式的证明策略:在证明时一般从左边到右边,或从右边到左边,或左右归一,总之,应遵循化繁为简的原则.定义法,化弦法,拆项折角法,公式变形法.1.正切函数的诱导公式在记忆时可简单记为“奇变偶不变,符号看象限”,即k·±α中,如果k为奇数,则正切变余切,至于符号取决于角k·±α所在的象限.2.在对三角式进行化简、求值、证明中,要遵循诱导公式先行的原则.特别提醒:应用正切函数的诱导公式时,必须等式两边都有意义.1.判断(正确的打“√”,错误的打“×”)(1)tan=cotα.()(2)对任意α∈R,都有tan(-α)=-tanα.()(3)tan(kπ-α)=-tanα.()[答案](1)√(2)×(3)√2.tan300°+sin450°的值为()A.1+B.1-C.-1-D.-1+B[tan300°+sin450°=tan(360°-60°)+sin(360°+90°)=-tan60°+sin90°=1-.]3.若cotα=m,则tan=()A.mB.-mC.D.-A[tan=tan=tan=cotα=m.]4.已知角α的终边经过点P(4,-3).(1)求sinα,cosα,tanα的值;(2)求·的值.[解](1)因为r==5,所以sinα==-,cosα==,tanα==-.(2)·=·=-=-=-.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第1章 三角函数 7 7.3 正切函数的诱导公式(教师用书)教案 北师大版必修4-北师大版高二必修4数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部