第2节单摆1.理解什么是单摆及在什么情况下单摆的振动是简谐运动.(重点)2.知道单摆的周期跟哪些因素有关,了解单摆周期公式,并能进行有关计算.3.单摆的回复力及单摆简谐运动的推导.(重点+难点)一、单摆的简谐运动1.单摆模型:细线的上端固定,下端系一小球,若忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大得多,与小球受到的重力及绳的拉力相比,空气等对它的阻力可以忽略,这样的装置就叫做单摆.2.单摆的回复力:单摆的回复力是摆球的重力沿圆弧切线方向的分力,在摆角很小的情况下,单摆所受的回复力与它偏离平衡位置的位移成正比,方向总指向平衡位置,因此单摆在摆角很小时做简谐运动.二、单摆做简谐运动的周期1.影响单摆周期的因素:实验表明,单摆振动的周期与摆球质量无关,在振幅较小时与振幅无关,但与摆长有关,摆长越长,周期越长.2.单摆的周期公式:周期T跟摆长l的二次方根成正比,跟重力加速度g的二次方根成反比,周期公式为T=2π__.1.为了能够忽略空气阻力,选择摆球时应选择什么样的球?提示:选质量大体积小的球,这样就可以忽略空气阻力.2.为什么摆角很小时,单摆的振动可以看做简谐运动?提示:摆角很小时,圆弧可以近似地看成直线,分力F可以近似地看做沿这条直线作用,这样就可以证明F=-kx.对单摆模型的理解1.运动特点(1)摆球以悬点为圆心做变速圆周运动,在运动过程中只要速度v≠0,沿半径方向都有向心力.(2)摆球以平衡位置为中心做往复运动,在运动过程中只要不在平衡位置,轨迹的切线方向都有回复力.2.摆球的回复力(1)平衡位置:小球静止时所在的位置.(2)小球的受力情况:小球受重力和绳的拉力(如图).(3)单摆的简谐运动:在θ很小时(理论值为5°),sinθ≈,G1=Gsinθ=x,G1方向与摆球位移方向相反,所以有回复力F回=-G1=-x=-kx.因此,在摆角θ很小时,单摆做简谐运动.摆球经过平衡位置时,回复力为零,而合力不为零,此时合力提供小球做圆周运动的向心力.关于单摆,下列说法中正确的是()A.摆球受到的回复力方向总是指向平衡位置B.摆球受到的回复力是它的合力C.摆球经过平衡位置时,所受的合力为零D.摆角很小时,摆球受到的合力的大小跟摆球对平衡位置的位移大小成正比[解析]单摆的回复力不是它的合力,而是重力沿圆弧切线方向的分力,A对、B错;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心),C错;另外摆球所受的合力与位移大小不成正比,D错.[答案]A对单摆的摆动过程的动力学分析,首先要搞清单摆的运动既有往复性摆动又有绕悬点的圆周运动,搞清单摆回复力和向心力的来源.关于单摆摆球在运动过程中的受力,下列结论正确的是()A.摆球受重力、摆线的张力、回复力、向心力作用B.摆球受的回复力最大时,向心力为零;回复力为零时,向心力最大C.摆球受的回复力最大时,摆线中的张力大小比摆球的重力大D.摆球受的向心力最大时,摆球的加速度方向沿摆球的运动方向解析:选B.单摆在运动过程中,摆球受重力和绳的拉力,故A错.重力垂直于绳的分力提供回复力.当回复力最大时,摆球在最大位移处,速度为零,向心力为零,则拉力小于重力,在平衡位置处,回复力为零,速度最大,向心力最大,摆球的加速度方向沿绳指向悬点,故C、D错,B对.对单摆周期公式的理解及应用1.摆长l(1)实际的单摆摆球不可能是质点,所以摆长应是从悬点到摆球球心的长度,即l=L+,L为摆线长,d为摆球直径.(2)等效摆长:图(a)中甲、乙在垂直纸面方向摆起来效果是相同的,所以甲摆的摆长为l·sinα,这就是等效摆长,其周期T=2π.图(b)中,乙在垂直纸面方向摆动时,与甲摆等效;乙在纸面内小角度摆动时,与丙等效.2.等效重力加速度(1)若单摆在光滑斜面上摆动,如图:则等效重力加速度g′=g·sinα,其周期为T=2π.(2)若单摆系统处在非平衡状态(如加速、减速、完全失重状态),则一般情况下,g值等于摆球相对静止在自己的平衡位置时摆线所受的张力与摆球质量的比值.例如:图(c)场景中的等效重力加速度g′=gsinα,球相对静止在O时,FT=mgsinα,等效加速度g′=...