电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《不等式及其解集》教学设计VIP免费

《不等式及其解集》教学设计_第1页
1/6
《不等式及其解集》教学设计_第2页
2/6
《不等式及其解集》教学设计_第3页
3/6
9.1.1《不等式及其解集》教学设计湖北省枣阳市兴隆一中(441218)谢勇一、内容及内容解析内容本节课内容是人教版《义务教育课程标准实验教科书·数学》七年级下册第九章第一节第1课时的内容.涉及概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.内容解析现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学,不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.二、目标及目标解析1.教学目标(1)了解不等式的概念.(2)理解不等式的解、解集及解不等式,能正确表示不等式的解集.(3)体会数学学习中的类比思想和数形结合思想.2.目标解析目标(1)要求学生能正确区别不等式、等式以及代数式.目标(2)要求学生能够通过计算判断一个数是否为不等式的解;理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合;用符号表示简单不等式的解集,并学会用数轴的形式表示简单不等式的解集;理解解不等式是求不等式解集的一个过程.目标(3)需要教师紧紧把握类比思想方法这个主线,让学生在由等式到不等式,由方程的解到不等式的解,解方程到解不等式的类比教学过程中,潜移默化,把教学过程变成学生对知识的探索过程,让学生学会用类比的思想方法思考和解决问题,帮助学生积累数学活动的经验.并在用式子和用数轴表示不等式的解集的教学中让学生体会到数形结合思想.三、学生学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,对“>”“<”符号并不陌生,在前面学习过用方程表示问题情景中的等量关系.不等式和方程在分析解决实际问题中有许多共同点,教学中,可以在学生已有知识的基础上,结合七年级学生认知特点,合理地应用类比思想,充分发挥学习心理学中正向迁移的积极作用,为进一步学习不等式提供合理的学习平台.在知识障碍方面,不等式的解集是一个抽象的概念,涉及集合思想,学生理解起来较困难,特别是“解集”与“解”之间的关系,学生容易混淆;数轴上表示解集是数和图形的相互转化,需要注意的地方多,如:“不等号的方向与折射线的方向”,“画空心圆圈的情形”,学生在做题时容易误解;在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难.另外,由于七年级学生具有好动、好问、好奇的心理特征,所以在教学中,一方面,要运用直观生动的形式,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面,要创造条件与机会,让学生发表见解,充分发挥学生学习的主动性.四、教学重难点重点:不等式相关概念的理解和不等式的解集的表示.难点:不等式的解集的理解.五、教学策略及其分析策略教师通过设置“问题串”,利用类比的思想,采用启发式教学,使学生将独立思考与合作交流相结合,从而达成学习目标.策略分析本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.教师不断用等式、方程知识的学习内容和学习方法启发学生,通过设置环环相扣的“问题串”,引导学生达成学习目标.这样以旧引新,以新强旧,学生更易理解.在这个过程中,教师为学生搭建自主学习、合作交流的平台,展示学习成果、反馈学习疑难;通过富有针对性的提问、指导,对教学进行及时调控,从而面向全体,为不同层次的学生提供学习的机会和恰当的帮助,提高课堂实效.六、教学过程设计(一)创设情境,引入新课生活引入:在前面,我们学习了与方程有关的很多知识,了解到生活中存在着很多的等量关系.那么,请同学们想一想,在生活中是...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《不等式及其解集》教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部