xO-23y=x2-x-6yy>0y>0y<0图2.3-1四川省南江四中高一数学初高中衔接教材:一元二次不等式解法二次函数y=x2-x-6的对应值表与图象如下:x-3-2-101234y60-4-6-6-406由对应值表及函数图象(如图2.3-1)可知当x=-2,或x=3时,y=0,即x2-x=6=0;当x<-2,或x>3时,y>0,即x2-x-6>0;当-2<x<3时,y<0,即x2-x-6<0.这就是说,如果抛物线y=x2-x-6与x轴的交点是(-2,0)与(3,0),那么一元二次方程x2-x-6=0的解就是x1=-2,x2=3;同样,结合抛物线与x轴的相关位置,可以得到一元二次不等式x2-x-6>0的解是x<-2,或x>3;一元二次不等式x2-x-6<0的解是-2<x<3.上例表明:由抛物线与x轴的交点可以确定对应的一元二次方程的解和对应的一元二次不等式的解集.那么,怎样解一元二次不等式ax2+bx+c>0(a≠0)呢?我们可以用类似于上面例子的方法,借助于二次函数y=ax2+bx+c(a≠0)的图象来解一元二次不等式ax2+bx+c>0(a≠0).为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为用心爱心专心1(1)xyOx1x2xyOx1=x2yxO图2.3-2②③①x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c=0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.例解不等式:(1)x2+2x-3≤0;(2)x-x2+6<0;(3)4x2+4x+1≥0;(4)x2-6x+9≤0;(5)-4+x-x2<0.解:(1) Δ>0,方程x2+2x-3=0的解是x1=-3,x2=1.∴不等式的解为-3≤x≤1.(2)整理,得x2-x-6>0. Δ>0,方程x2-x-6=0的解为x1=-2,x2=3.∴所以,原不等式的解为x<-2,或x>3.(3)整理,得(2x+1)2≥0.由于上式对任意实数x都成立,∴原不等式的解为一切实数.(4)整理,得(x-3)2≤0.由于当x=3时,(x-3)2=0成立;而对任意的实数x,(x-3)2<0都不成立,∴原不等式的解为x=3.(5)整理,得x2-x+4>0.Δ<0,所以,原不等式的解为一切实数.练习:解下列不等式:1.22730xx;2.23520xx3.29610xx4.24410xx5.2250xx用心爱心专心2(十七)一元二次不等式解法(2)例1已知不等式20(0)axbxca的解是2,3xx或求不等式20bxaxc的解.解:由不等式20(0)axbxca的解为2,3xx或,可知0a,且方程20axbxc的两根分别为2和3,∴5,6bcaa,即5,6bcaa.由于0a,所以不等式20bxaxc可变为20bcxxaa,即-2560,xx整理,得2560,xx所以,不等式20bxaxc的解是x<-1,或x>.说明:本例利用了方程与不等式之间的相互关系来解决问题.例2解关于x的一元二次不等式210(xaxa为实数).分析对于一元二次不等式,按其一般解题步骤,首先应该将二次项系数变成正数,本题已满足这一要求,欲求一元二次不等式的解,要讨...