2015年宁夏银川二中高考数学一模试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1.设集合M={x|﹣2<x<3},P={x|x≤﹣1},那么“x∈M或x∈P”是“x∈M∩P”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件2.设a,b为实数,若复数,则()A.B.a=3,b=1C.D.a=1,b=33.已知α是第二象限角,P(x,)为其终边上一点,且cosα=x,则x=()A.B.±C.﹣D.﹣4.如图,若执行该程序,输出结果为48,则输入k值为()A.4B.5C.6D.75.已知函数和g(x)=alnx,曲线y=f(x)和y=g(x)有交点且在交点处有相同的切线,则a=()A.B.C.D.e6.如图所示,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等腰梯形,等腰直角三角形和长方形,则该几何体表面积为()1A.14B.14+2C.8+8D.167.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增8.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.9.已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,若,则实数k=()A.1B.C.D.210.在△ABC中,角A、B、C所对的边分别为a,b,c,若,且,则下列关系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c211.已知抛物线的方程为y2=4x,过其焦点F的直线l与抛物线交于A,B两点,若S△AOF=3S△BOF(O为坐标原点),则|AB|=()A.B.C.D.412.已知函数f(x)=x2﹣2x+1+alnx有两个极值点x1,x2,且x1<x2,则()2A.f(x2)<﹣B.f(x2)<C.f(x2)>D.f(x2)>二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在答题卡中横线上.13.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为的学生.14.在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=1,梯形所在平面内一点P满足,则=.15.设是奇函数,则使f(x)<0的x的取值范围是16.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为.三、解答题(本大题共6个小题,共70分.要求解答应写出文字说明,证明过程或演算步骤)17.已知数列{an}中,a1=1,且点(an,an+1)在函数y=x+1的图象上(n∈N*),数列{bn}是各项都为正数的等比数列,且b2=2,b4=8.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)若数列{cn}满足cn=(﹣1)nan+bn,记数列{cn}的前n项和为Tn,求T100的值.18.从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图所示的频率分布直方图1,从左到右各组的频数依次记为A1、A2、A3、A4,A5.(1)求图1中a的值;(2)图2是统计图1中各组频数的一个算法流程图,求输出的结果S;(3)从质量指标值分布在[80,90)、[110,120)的产品中随机抽取2件产品,求所抽取两件产品的质量指标之差大于10的概率.319.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,且AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当三棱锥M﹣BCD的体积等于时,求PB的长.20.已知椭圆C:+=1(a>b>0)过点(2,0),且椭圆C的离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)若动点P在直线x=﹣1上,过P作直线交椭圆C于M,N两点,且P为线段MN中点,再过P:作直线l⊥MN.求直线l是否恒过定点,如果是则求出该定点的坐标,不是请说明理由.21.已知函数f(x)=+lnx(a∈R)(Ⅰ)当a=1时,求f(x)的最小值;(Ⅱ)若f(x)在(0,e]上的最小值为2,求实数a的值;4(Ⅲ)当a=﹣1时,试判断函数g(x)=f(x)+在其定义域内的零点的个数.22,23...