广东省深圳市2015届高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合U={2,0,1,5},集合A={0,2},则∁UA=()A.φB.{0,2}C.{1,5}D.{2,0,1,5}2.(5分)i是虚数单位,复数i2(i﹣1)的虚部是()A.iB.﹣iC.1D.﹣13.(5分)在四边形ABCD中,“=+”是“ABCD是平行四边形”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)若函数y=ax+b的部分图象如图所示,则()A.0<a<1,﹣1<b<0B.0<a<1,0<b<1C.a>1,﹣1<b<0D.a>1,﹣1<b<05.(5分)已知实数x,y满足不等式组,则x+2y的最大值为()A.3B.3C.4D.56.(5分)如图,三棱锥A﹣BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=2,则该三棱锥的侧视图(投影线平行于BD)的面积为()A.B.2C.2D.27.(5分)在△ABC中,A,B,C所对的边分别为a,b,c,若A=60°,a=,b+c=3,则△ABC的面积为()A.B.C.D.218.(5分)已知F1,F2分别是双曲线C:﹣=1(a,b>0)的左、右焦点,点P在C上,若PF1⊥F1F2,且PF1=F1F2,则C的离心率是()A.﹣1B.C.+1D.﹣19.(5分)函数f(x)=x+在(﹣∞,﹣1)上单调递增,则实数a的取值范围是()A.[1,+∞)B.(﹣∞,0)∪(0,1]C.(0,1]D.(﹣∞,0)∪[1,+∞)10.(5分)在平面直角坐标系xOy中,设点M与曲线Ci上任意一点距离的最小值为di(i=1,2),若d1<d2,则称C1比C2更靠近点M,下列为假命题的是()A.C1:x=0比C2:y=0更靠近M(1,﹣2)B.C1:y=ex比C2:xy=1更靠近M(0,0)C.若C1:(x﹣2)2+y2=1比C2:x2+(y﹣2)2=1更靠近点M(m,2m),则m>0D.若m>1,则C1:y2=4x比C2:x﹣y+m=0更靠近点M(1,0)二、填空题:本大题共3小题,考生作答4小题,每小题5分满分15分.本大题分为必做题和选做题两部分(一)必做题:第11、12、13题为必做题,每道试题考生必须作答.11.(5分)已知函数f(x)=,则f+f(﹣2015)=.12.(5分)将容量为n的样本中的数据分成5组,绘制频率分布直方图.若第1至第5个长方形的面积之比3:4:5:2:1,且最后两组数据的频数之和等于15,则n等于.13.(5分)执行如图的程序框图,则输出S的值为.2三.选做题:第14、15题为选做题(坐标系与参数方程)14.(5分)在极坐标系中,点(2,)到直线ρcosθ=3的距离等于.(几何证明选讲选做题)15.如图,在Rt△ABC中,∠A=30°,∠C=90°,D是AB边上的一点,以BD为直径的⊙O与AC相切于点E.若BC=6,则DE的长为.三、解答题16.(12分)函数f(x)=2sin(ωx+)(ω>0)的最小正周期是π.(1)求f()的值;(2)若f(x0)=,且x0∈(,),求sin2x0的值.17.(12分)空气质量指数(简称AQI)是定量描述空气质量状况的指数,其数值越大说明空气污染越严重,为了及时了解空气质量状况,广东各城市都设置了AQI实时监测站.下表是某网站公布的广东省内21个城市在2014年12月份某时刻实时监测到的数据:城市AQI数值城市AQI数值城市AQI数值城市AQI数值城市AQI数值城市AQI数值城市AQI数值广州118东莞137中山95江门78云浮76茂名107揭阳80深圳94珠海95湛江75潮州94河源124肇庆48清远47佛山160惠州113汕头88汕尾74阳江112韶关68梅州84(1)请根据上表中的数据,完成下列表格:空气质量优质良好轻度污染中度污染AQI值范围[0,50)[50,100)[100,150)[150,200)城市个数(2)现从空气质量“良好”和“轻度污染”的两类城市中采用分层抽样的方式确定6个城市,省环保部门再从中随机选取2个城市组织专家进行调研,则选取的城市既有空气质量“良好”的又有“轻度污染”的概率是多少?318.(14分)如图,在四棱锥S﹣ABCD中,底面ABCD是平行四边形,侧SBC是正三角形,点E是SB的中点,且AE⊥平面ABC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.19.(14分)已知各项为正的等差数列{an}的公差为d=1,且+=.(1)求数列{an}的通项公式;(2)若数列{bn}满足:b1=λ,an+1bn+1+anbn=(﹣1)n+1(n∈N),是否存...