专练58高考大题专练(七)极坐标与参数方程1.[2020·全国卷Ⅰ][选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcosθ-16ρsinθ+3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.2.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.3.[2019·全国卷Ⅱ]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sinθ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.4.[2020·全国卷Ⅱ][选修4-4:坐标系与参数方程]已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:(t为参数).(1)将C1,C2的参数方程化为普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.5.[2020·合肥一中高三测试]在直角坐标系xOy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,x轴的正半轴为极轴)中,圆C的方程为ρ=2sinθ.(1)求圆C的圆心到直线l的距离;(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|+|PB|.专练58高考大题专练(七)极坐标与参数方程1.解析:(1)当k=1时,C1:消去参数t得x2+y2=1,故曲线C1是圆心为坐标原点,半径为1的圆.(2)当k=4时,C1:消去参数t得C1的普通方程为+=1.C2的直角坐标方程为4x-16y+3=0.由解得故C1与C2的公共点的直角坐标为.2.解析:(1)由x=ρcosθ,y=ρsinθ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于点B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=.经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.3.解析:本题主要考查了极坐标的概念和求极坐标方程的基本方法,考查了数学运算能力和数形结合的思想方法,主要体现了直观想象和数学运算的核心素养.(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin=2.由已知得|OP|=|OA|cos=2.设Q(ρ,θ)为l上除P的任意一点.在Rt△OPQ中,ρcos=|OP|=2.经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cosθ=4cosθ,即ρ=4cosθ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cosθ,θ∈.4.解析:(1)C1的普通方程为x+y=4(0≤x≤4).由C2的参数方程得x2=t2++2,y2=t2+-2,所以x2-y2=4.故C2的普通方程为x2-y2=4.(2)由得所以P的直角坐标为.设所求圆的圆心的直角坐标为(x0,0),由题意得x=2+,解得x0=.因此,所求圆的极坐标方程为ρ=cosθ.5.解析:(1)由ρ=2sinθ,可得x2+y2-2y=0,即圆C的直角坐标方程为x2+(y-)2=5.由可得直线l的普通方程为x+y--3=0.所以圆C的圆心(0,)到直线l的距离为=.(2)将l的参数方程代入圆C的直角坐标方程,得2+2=5,即t2-3t+4=0.(*)由于Δ=(-3)2-4×4=2>0.故可设t1,t2是方程(*)的两个实根,所以又直线l过点P(3,),故由上式及t的几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2=3.