专题13坐标系与参数方程1.【2019年高考北京卷文数】已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是A.B.C.D.【答案】D【解析】由题意,可将直线化为普通方程:,即,即,所以点(1,0)到直线的距离,故选D.【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.2.【2019年高考全国Ⅰ卷文数】在直角坐标系xOy中,曲线C的参数方程为2221141txttyt,(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos3sin110.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【答案】(1);的直角坐标方程为;(2).【解析】(1)因为,且,所以C的直角坐标方程为.的直角坐标方程为.(2)由(1)可设C的参数方程为(为参数,).C上的点到的距离为.当时,取得最小值7,故C上的点到距离的最小值为.【名师点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.3.【2019年高考全国Ⅱ卷文数】在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【答案】(1),l的极坐标方程为;(2).【解析】(1)因为在C上,当时,.由已知得.设为l上除P的任意一点.在中,,经检验,点在曲线上.所以,l的极坐标方程为.(2)设,在中,即.因为P在线段OM上,且,故的取值范围是.所以,P点轨迹的极坐标方程为.【名师点睛】本题主要考查极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.4.【2019年高考全国Ⅲ卷文数】如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.(1)分别写出,,的极坐标方程;(2)曲线由,,构成,若点在M上,且,求P的极坐标.【答案】(1)的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)或或或.【解析】(1)由题设可得,弧所在圆的极坐标方程分别为,,.所以的极坐标方程为,的极坐标方程为,的极坐标方程为.(2)设,由题设及(1)知若,则,解得;若,则,解得或;若,则,解得.综上,P的极坐标为或或或.【名师点睛】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.5.【2019年高考江苏卷数学】在极坐标系中,已知两点,直线l的方程为.(1)求A,B两点间的距离;(2)求点B到直线l的距离.【答案】(1);(2)2.【解析】(1)设极点为O.在△OAB中,A(3,),B(,),由余弦定理,得AB=.(2)因为直线l的方程为,则直线l过点,倾斜角为.又,所以点B到直线l的距离为.【名师点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.6.【重庆西南大学附属中学校2019届高三第十次月考数学】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线与曲线两交点所在直线的极坐标方程;(2)若直线的极坐标方程为,直线与轴的交点为,与曲线相交于两点,求的值.【答案】(1);(2)【解析】(1)曲线的普通方程为:,曲线的普通方程为:,即,由两圆心的距离,所以两圆相交,所以两方程相减可得交线为,即.所以直线的极坐标方程为.(2)直线的直角坐标方程:,则与轴的交点为,直线的参数方程为,带入曲线得.设两点的参数为,,所以,,所以,同号.所以【点睛】本题考查了极坐标,参数方程和普通方程的互化和用参数方程计算长度,是常见考题.7.【山东省郓城一中等学校2019届高三第三次模拟考试数学】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点M的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若N是曲线C上的动点,P为线段MN的...