第四节直线、平面垂直的判定与性质与垂直相关的命题的判定考向聚焦高考的常考内容,常将定义、判定和性质结合起来,与线面平行相关知识命制试题,有时结合命题的真假判定或充要条件综合命题,考查学生对线面平行与垂直的判定定理及性质的理解,一般以选择题、填空题形式出现,难度中档以下,所占分值4~5分1.(年大纲全国卷,文8)已知直二面角αlβ,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD等于()(A)2(B)(C)(D)1解析:如图, AC⊥l,∴AD2=AC2+CD2.又 BD⊥l,α⊥β,α∩β=l,∴BD⊥α,∴BD⊥AD,∴AB2=AD2+BD2.∴AB2=AC2+CD2+BD2,∴22=12+CD2+12,∴CD2=2,∴CD=.故选C.答案:C.2.(年山东卷,文4)在空间,下列命题正确的是()(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D)垂直于同一平面的两条直线平行解析:A选项中平行直线的平行投影也可能是平行的;B选项中的两个平面也可以相交;C选项中的两个平面也可以相交.故选D.答案:D.3.(年全国大纲卷,文19,12分)如图,四棱锥PABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角APBC为90°,求PD与平面PBC所成角的大小.解:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=2,PA=2,PE=2EC,故PC=2,EC=,FC=,从而=,=.因为=,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面PAB内过点A作AG⊥PB,G为垂足.因为二面角APBC为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD==2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,故A、D两点到平面PBC的距离相等,即d=AG=.设PD与平面PBC所成的角为α,则sinα==.所以PD与平面PBC所成的角为30°.4.(年湖南卷,文19,12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(1)证明:BD⊥PC;(2)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥PABCD的体积.解:(1)因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA⊥BD.又AC⊥BD,PA,AC是平面PAC内的两条相交直线,所以BD⊥平面PAC.而PC⊂平面PAC,所以BD⊥PC.(2)设AC和BD相交于点O,连结PO,由(1)知,BD⊥平面PAC,所以∠DPO是直线PD和平面PAC所成的角.从而∠DPO=30°.由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°,得PD=2OD.因为四边形ABCD为等腰梯形,AC⊥BD,所以△AOD,△BOC均为等腰直角三角形.从而梯形ABCD的高为AD+BC=×(4+2)=3.于是梯形ABCD的面积S=×(4+2)×3=9.在等腰直角三角形AOD中,OD=AD=2,所以PD=2OD=4,PA==4.故四棱锥PABCD的体积为V=×S×PA=×9×4=12.5.(年安徽卷,文19,12分)如图,长方体ABCDA1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中点,E是棱AA1上任意一点.(1)证明:BD⊥EC1;(2)如果AB=2,AE=,OE⊥EC1,求AA1的长.(1)证明:连接AC,A1C1.由底面是正方形知,BD⊥AC.因为AA1⊥平面ABCD,BC⊂平面ABCD,所以AA1⊥BD.又由AA1∩AC=A,所以BD⊥平面AA1C1C.再由EC1⊂平面AA1C1C知,BD⊥EC1.(2)解:设AA1的长为h,连接OC1.在Rt△OAE中,AE=,AO=,故OE2=()2+()2=4.在Rt△EA1C1中,A1E=h-,A1C1=2,故E=(h-)2+(2)2.在Rt△OCC1中,OC=,CC1=h,O=h2+()2.因为OE⊥EC1,所以OE2+E=O,即4+(h-)2+(2)2=h2+()2,解得h=3,所以AA1的长为3.与垂直相关的问题的证明考向聚焦高考的必考内容,常以棱柱、棱锥为载体,考查学生对线面垂直、面面垂直的判定定理与性质定理的应用,主要题型有(1)线线垂直的证明;(2)线面垂直的证明;(3)面面垂直的证明.常以解答题形式出现,难度中档,所占分值4~8分备考指津注意线线垂直线面垂直面面垂直的转化思想的训练,及推理论证能力的培养6.(年北京卷,文16,14分)如图(1),在Rt△ABC中,∠C=90°,D、E分别为AC、AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥...