2014-2015学年福建省泉州市晋江二中高二(下)期末数学试卷(理科)一.选择题(每小题5分共60分)1.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是()A.B.C.D.2.函数y=x2sinx的导数为()A.y′=2xcosx+x2sinxB.y′=2xcosx﹣x2sinxC.y′=2xsinx+x2cosxD.y′=2xsinx﹣x2cosx3.“|x﹣1|<2成立”是“(x+2)(x﹣3)<0成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.函数f(x)=x﹣sinx在(﹣∞,+∞)内是()A.增函数B.减函数C.有增有减D.不能确定5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为()A.B.C.D.6.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()x3456y2.5t44.5A.3B.3.15C.3.5D.4.57.已知ξ的分布列如下:ξ012P并且η=3ξ+2,则方差Dη=()A.B.C.D.718.来晋江旅游的外地游客中,若甲、乙、丙三人选择去五店市游览的概率均为,且他们的选择互不影响,则这三人中至多有两人选择去五店市游览的概率为()A.B.C.D.9.设,则二项式的展开式的常数项是()A.12B.6C.4D.210.数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有()个.A.21B.22C.23D.2411.设y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0,f(x0)),其中x0满足f″(x0)=0.已知f(x)=﹣,则=()A.2012B.2013C.2014D.20151+x)n的展开式中,xk的系数可以表示从n个不同物体中选出k个的方法总数.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是()A.(1+x)(1+x2)(1+x3)…(1+x10)B.(1+x)(1+2x)(1+3x)…(1+10x)C.(1+x)(1+2x2)(1+3x3)…(1+10x10)D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x10)二.填空题(每小题4分共20分)13.计算=.14.已知随机变量X~N(3,σ2),若P(X<a)=0.8,则P(6﹣a<X<a)=.15.函数y=xex在其极值点处的切线方程为.16.现有5种不同颜色的染料,要对如图中的四个不同区域进行着色,要求有公共边的两块区域不能使用同一种颜色,则不同的着色方法的种数是(用数字作答).217.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为.三.解答题(共70分)18.已知(﹣)n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n的值;(2)求展开式中x3项的系数(3)计算式子C﹣2C+4C﹣8C+…+1024C的值.19.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.20.已知两个正数a,b满足a+b=1(1)求证:+≥4(2)若不等式|x﹣2|+|2x﹣1|≤+对任意正数a,b都成立,求实数x的取值范围.21.某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.优秀非优秀总计课改班50非课改班20110合计210(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;3(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.22.道路交通安全法...