六年级数学概念(二)姓名掌握情况好一般不能掌握家长签字分数乘法1、分数和整数相乘,可以表示求几个几分之几相加的和。2、求一个数的几分之几是多少,可以用乘法计算。3、分数和整数相乘,用分数的分子和整数相乘的积作分子,分母不变。如果整数能与分数的分母约分,要先约分,再计算。4、在解答有关分数乘法的实际问题时要找准单位“1”的量。数量关系式是:单位“1”×分率=分率对应的量5、求一个数的几分之几(几倍)是多少的分数应用题的解题思路和解答方法完全相同:用一个数乘几分之几。解题思路中是把一个数看作单位“1”,这也就提示我们解答分数应用题时先要找准单位“1”。同样,我们在画线段图时,也应该先画出单位“1”的量。在解答分数应用题的过程中,不仅仅要找准单位“1”的量,还要知道分率对应的量是什么?一般来讲,题目中分率如果是多(少)的分率,那么分率对应的量就是多的部分(少)。6、根据“实际产量比计划节约了”,写出一个数量关系式计划产量×=实际产量比计划节约的产量7、分数和分数相乘,表示求一个数的几分之几相加的和,分数和分数相乘,用分子相乘的积作分子,用分母相乘的积作分母。8、因为整数可以看成分母是1的假分数,所以分数和分数相乘的计算方法适用于分数和整数相乘。9、三个数相乘,先把前两个数相乘,得出的积再和第三个数相乘。但为了简便,可以先把所有分数的分子和分母约分,再把约分后的分子和分母相乘。10、一个数和真分数相乘,所得的积小于这个数;一个数和假分数相乘,所得的积大于这个数。11、解答分数乘法应用题时,可以借助于线段图来分析数量关系。在画线段图时,先画单位“1”的量。数量关系式是:单位“1”×分率=分率对应的量。12、乘积为1的两个数互为倒数,求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。13、1的倒数是1,0没有倒数,真分数的倒数都大于1,自然数的倒数都是分子为1的真分数,假分数的倒数小于或等于1。14、典型例题例1、下面的长方形代表1公顷,请你在图中表示出公顷的,结果是多少公顷?分析与解:这个题目要分层次思考,一步一步展开。(1)公顷是1公顷的(1公顷的一半);(2)公顷的,就是将公顷部分平均分成3份,表示出2份。第一种解法:公顷的公顷第二种解法:第三种解法:公顷公顷的公顷公顷的公顷的是大长方形的,×=(公顷)或×=(公顷)例2、一袋大米重25千克,先吃去这袋大米的,又吃去千克,两次一共吃去多少千克?分析与解:求两次共吃去多少千克,要用第一次吃的千克数加上第二次吃的千克数;第一次吃了这袋大米的,是把这袋大米看作单位“1”,即吃去25千克的;第二次吃去千克。先求出第一次吃去多少千克。25×=5(千克)5+=5(千克)答:两次一共吃去5千克。点评:这一题的关键就是正确理解题目中两个所表示的不同含义,第一个表示是一个数的几分之几,是分率;而第二个表示的是千克,是具体的量。要先求出第一天的所对应的量再直接加上第二天吃的千克就可以了。在解题过程中,一定要注意区分,并作出正确的判断,再进行解答。例3、填空。()×=7×()=()×1=0.8×()分析与解:这是一道连等式填空。从题中可以看出,四道乘法算式的积都要相等,但是都等于几呢?题目中没有明确的要求,说明有多种填法。但是要解答得又对又快,可以从倒数的意义入手,即考虑每个算式的积都是1,这样,在相应的括号里只填上与之相乘的那个数的倒数就可以了。如果题目中明确给出了一个确定的数值作为积,那么解答此题时就只能一道一道地去思考解答了。()×=7×()=()×1=0.8×()已知a×3=×b=×c,并且a、b、c都不等于0,把a、b、c这三个数按从小到大的顺序排列,并说明理由。假设a×3=×b=×c=1那么a=、b=、c=1那么a<c<b例4、一根钢管截成两段,第一段占,第二段长米。哪一根长?分析与解:可以用画图的方法,把题意表示出来。线段图如下:第一段占第二段长米通过线段图可以看出,第一段占,第二段占1-=,>。答:第一段长一些。点评:乍看上去,两个,一个是分率,一个是具体的量。而单位“1”是多少并不知道,所以无法比较大小。与此题类似的课本上的思考题答案也无...