安徽省皖南八校2019届高三数学第一次联考试题文(含解析)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题題5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合,则A.B.C.D.【答案】B【解析】【分析】观察法直接写出A与B的交集.【详解】 A={2,4,5,6},∴A∩B={2},故选:B.【点睛】本题实质求满足属于集合且属于集合的元素的集合.。2.设(是虚数单位),则复数在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】复数的代数表示法及其几何意义.【详解】由,得在第二象限【点睛】本题考查了复数的运算法则、几何意义,考查了计算能力,属于基础题.3.函数且是增函数的一个充分不必要条件是A.B.C.D.【答案】C【解析】【分析】利用指数函数的单调性,结合充分条件与必要条件的定义求解即可.【详解】与是函数且为增函数的既不充分又不必要条件;是函数且为增函数的充要条件;可得,不等得到,所以是函数且是增函数的一个充分不必要条件,故选C.【点睛】判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.4.若,上,则m+2n的最小值为A.3B.4C.5D.6【答案】B【解析】【分析】利用基本不等式的性质求出最小值【详解】 ,,,∴,当且仅当,即时,取“”.【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.5.若角满足,则A.B.C.D.【答案】A【解析】【分析】根据诱导公式及二倍角的正弦、余弦函数公式即可求出值.【详解】,又,所以.【点睛】考查学生灵活运用诱导公式和二倍角公式求值问题.6.已知函数,则的值是A.B.C.D.【答案】A【解析】【分析】由里及外逐步求解函数值即可.【详解】,.【点睛】本题考查分段函数的函数值的求法,考查计算能力.7.如图在直角梯形ABCD中,AB=2AD=2DC,E为BC边上一点,,F为AE的中点,则A.B.C.D.【答案】B【解析】【分析】直接根据平面向量加法与减法的运算法则化简求解即可.【详解】根据平面向量的运算法则;因为所以,故选B.【点睛】本题主要考查向量的几何运算及外接圆的性质、向量的夹角,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).8.若函数在区间(-a,a)上是单调函数,则实数a的取值范围是A.B.C.D.【答案】D【解析】【分析】求出函数在上递增,由可得结果.【详解】函数函数可化为,由可得函数的单调增区间为由可得,实数的取值范围是,故选D.【点睛】函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.9.设不等式组,所表示的平面区城为M,若直线的图象经过区域M,则实数k的取值范围是A.B.C.D.【答案】A【解析】【分析】画出不等式组表示的可行域,将问题转化为可行域内的点与连线的斜率的范围求解即可.【详解】画出不等式组表示的可行域,如图,恒过,即为可行域内的点与连线的斜率,由图可知,,即实数的取值范围是,故选A.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移或旋转变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10.已知定义在上的函数满足,...