电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高一数学幂函数课件北师大版 课件VIP免费

高一数学幂函数课件北师大版 课件_第1页
1/59
高一数学幂函数课件北师大版 课件_第2页
2/59
高一数学幂函数课件北师大版 课件_第3页
3/59
幂函数复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;(3)如果立方体的边长为a,那么立方体的体积V=a3,这里V是a的函数;(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入(5)如果某人t秒内骑车行进了1km,那么他骑车的平均速度v=t-1km/s,这里v是t的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入(5)如果某人t秒内骑车行进了1km,那么他骑车的平均速度v=t-1km/s,这里v是t的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入思考:这些函数有什么共同的特征?思考:这些函数有什么共同的特征?思考:这些函数有什么共同的特征?(1)都是函数;思考:这些函数有什么共同的特征?(1)都是函数;(2)指数为常数;思考:这些函数有什么共同的特征?(1)都是函数;(2)指数为常数;(3)均是以自变量为底的幂.讲授新课一般地,函数y=xa叫做幂函数,其中x是自变量,a是常数.注意:幂函数中a的可以为任意实数.1.判断下列函数是否为幂函数练习4)1(xy21)2(xy22)3(xy2)4(xy2)5(3xy2.在同一平面直角坐标系内作出幂函数练习12132,,,,xyxyxyxyxy的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxy的图象.O定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高一数学幂函数课件北师大版 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部