幂函数复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;复习引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;(3)如果立方体的边长为a,那么立方体的体积V=a3,这里V是a的函数;(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入(5)如果某人t秒内骑车行进了1km,那么他骑车的平均速度v=t-1km/s,这里v是t的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入(5)如果某人t秒内骑车行进了1km,那么他骑车的平均速度v=t-1km/s,这里v是t的函数.(4)如果一个正方形场地的面积为S,那么这个正方形的边长,这里a是S的函数;21Sa复习引入思考:这些函数有什么共同的特征?思考:这些函数有什么共同的特征?思考:这些函数有什么共同的特征?(1)都是函数;思考:这些函数有什么共同的特征?(1)都是函数;(2)指数为常数;思考:这些函数有什么共同的特征?(1)都是函数;(2)指数为常数;(3)均是以自变量为底的幂.讲授新课一般地,函数y=xa叫做幂函数,其中x是自变量,a是常数.注意:幂函数中a的可以为任意实数.1.判断下列函数是否为幂函数练习4)1(xy21)2(xy22)3(xy2)4(xy2)5(3xy2.在同一平面直角坐标系内作出幂函数练习12132,,,,xyxyxyxyxy的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxyO的图象.练习xy2.在同一平面直角坐标系内作出幂函数12132,,,,xyxyxyxyxy的图象.O定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增[0,+∞)增增增(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,1)(1,1)(1,1)(1,1)(1,1)21xy1xy3xy2xyxy观察图象,将你发现的结论写下下表内定义域RRR[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性...