第一环节课前复习活动内容:1.求图中角X的度数:x=x=2.求图中角X的度数:∠ABF=20°,∠FDE=30x=x=第二环节新课学习(一)活动内容:(1)观察图,BC是⊙O的直径,它所对的圆周角有什么特点?你能证明吗?首先,让学生明确,“它所对的圆周角”指的是哪个角?(∠BAC)然后,让学生猜想,这个角的特点,并拿量角器实际测量,看看猜测是否准确.(∠BAC是一个直角)最后,让学生自行考虑进行证明的方法.引导应用圆周角和圆心角关系定理进行证明.解:直径BC所对的圆周角∠BAC=90°1证明: BC为直径∴∠BOC=180°∴(圆周角的度数等于它所对弧上的圆心角的度数的一半)(2)观察图,圆周角∠BAC=90°,弦BC是直径吗?为什么?首先,让学生猜想结果;然后,再让学生尝试进行证明.解:弦BC是直径.连接OC、OB ∠BAC=90°∴∠BOC=2∠BAC=180°(圆周角的度数等于它所对弧上的圆心角的度数的一半)∴B、O、C三点在同一直线上∴BC是⊙O的一条直径(3)从上面的两个议一议,得出推论:直径所对的圆周角是直角;90°的圆周角所对的弦是直径.几何表达为:直径所对的圆周角是直角; BC为直径∴∠BAC=90°90°的圆周角所对的弦是直径. ∠BAC=90°∴BC为直径第三环节新课学习(二)活动内容:(一)如图,A,B,C,D是⊙O上的四点,AC为⊙O的直径,请问∠BAD与∠BCD之间有什么关系?为什么?首先:引导学生进行猜想;然后:让学生进行证明.解:∠BAD与∠BCD互补 AC为直径2∴∠ABC=90°,∠ABC=90° ∠ABC+∠BCD+∠ABC+∠BAD=360°∴∠BAD+∠BCD=180°∴∠BAD与∠BCD互补(二)如图,C点的位置发生了变化,∠BAD与∠BCD之间有的关系还成立吗?为什么?首先:让学生猜想结论;然后:让学生拿出量角器进行度量,实验验证猜想结果;最后:让学生利用所学知识进行严密证明.解:∠BAD与∠BCD的关系仍然成立连接OB,OD ,(圆周角的度数等于它所对弧上圆心角的一半) ∠1+∠2=360°∴∠BAD+∠BCD=180°∴∠BAD与∠BCD互补(三)圆内接四边形概念与性质探索如图,两个四边形ABCD有什么共同的特点?得出定义:四边形ABCD的的四个顶点都在⊙O上,这样的四边形叫做圆内接四边形;这个圆叫做四边形的外接圆.通过议一议环节,我们我们发现∠BAD与∠BCD之间有什么关系?推论:圆内接四边形的对角互补.几何语言: 四边形ABCD为圆内接四边形∴∠BAD+∠BCD=180°(圆内接四边形的对角互补)活动目的:本活动环节,目的是通过对特殊图形的研究,探索出一个特殊的关系,然后进行一般图形的变换,让学生再次经历猜想,实验,证明这三个探索问题的基本环节,得到一般的规律.规律探索后,再引入相关概念,得出相关推论.312活动的注意事项:在(二)的探索中,学生会陷入∠BAD和∠BCD所对圆心角混淆的误区,以及不会对这两个圆心角的角度进行表达.其次,在两个图形中四边形ABCD的共同特征探索方面,学生可能会简单问题复杂化,想到其他比较复习的特征,该给予肯定,但要引导学生不要把问题向复杂方向思考.第四环节推论的应用(一)活动内容:(1)小明想用直角尺检查某些工件是否恰好为半圆形.下面所示的四种圆弧形,你能判断哪个是半圆形?为什么?(2)如图,⊙O的直径AB=10cm,C为⊙O上的一点,∠B=30°,求AC的长.解 AB为直径∴∠BCA=90°在Rt△ABC中,∠ABC=30°,AB=10∴第五环节推论的应用(二)活动内容:如图,∠DCE是圆内接四边形ABCD的一个外角,∠A与∠DCE的大小有什么关系?让学生自主经历猜想,实验验证,严密证明三个环节解:∠A=∠CDE 四边形ABCD是圆内接四边形∴∠A+∠BCD=180°(圆内角四边形的对角互补) ∠BCD+∠DCE=180°∴∠A=∠DCE第六环节方法小结4活动内容:议一议:在得出本节结论的过程中,你用到了哪些方法?请举例说明,并与同伴进行交流.让学生自主总结交流,最后老师再作方法归纳总结.方法1:解决问题应该经历“猜想——实验验证——严密证明”三个基本环节.方法2:从特殊到一般的研究方法,对特殊图形进行研究,从而改变特殊性,得出一般图形,总结一般规律.活动目的:通过小结,让学生回顾本节课的学习内容,尤其是知识内容和方法内容都应该进行总结,让学生懂得,我们学习不但...