武功县 2020 届高三第二次质量检测理科数学参考答案一、选择题(本大题共 12 小题,每小题 5 分,共 60 分. 在每小题列出的四个选项中,选出符合题目要求的一项)1.C 2.D 3.B 4.B 5.B 6.D 7.C 8.A 9.A 10.C 11.C 12.D 二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13. 14.3π 15.22516.3三、解答题(本大题共 6 小题,共 70 分. 解答须写出文字说明、证明过程和演算步骤)(一)必考题(共 60 分)17.(本小题满分 12 分)解:(1)由及正弦定理得 , 所以, 因为, 所以, 因为,所以. (2)△ABC 的面积,故. 而,故,所以. 18.(本小题满分 12 分)解:(1). 由分层抽样,知抽取的初中生有 60 名,高中生有 40 名. 因为初中生中,阅读时间不小于 30 个小时的学生频率为, 所以所有的初中生中,阅读时间不小于 30 个小时的学生约有人,同理,高中生中,阅读时间不小于 30 个小时的学生频率为,学生人 数约有人.所以该校所有学生中,阅读时间不小于 30 个小时的学生人数约有 450+420=870 人.(2)初中生中,阅读时间不足 10 个小时的学生频率为,样本人数为人 . 同 理 , 高 中 生 中 , 阅 读 时 间 不 足 10 个 小 时 的 学 生 样 本 人 数 为人. 故 X 的可能取值为 1,2,3. 则 ,, .123所以的分布列为:所以. 19.(本小题满分 12 分)解:直三棱柱 ABCA1B1C1 中,AC=3,BC=4,AB=5,故 AC,BC,CC1 两两垂直,建立空间直角坐标系(如图),则 C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4).(1)证明:AC=(-3,0,0),BC1=(0,-4,4),所以AC·BC1=0. 故 AC⊥BC1.(2)平面 ABC 的一个法向量为=(0,0,1),设平面 C1AB 的一个法向量为=(x,y,z),AC1=(-3,0,4),AB=(-3,4,0),由得令 x=4,则 y=3,z=3,=(4,3,3),故 cos〈,〉==.即二面角 C1ABC 的余弦值为.20.(本小题满分 12 分)解:(1)将点(0,4)代入椭圆 C 的方程,得=1,∴b=4,又 e=,则=,∴1-=,∴a=5,∴椭圆 C 的方程为=1.(2)过点(3,0)且斜率为的直线方程为 y=(x-3),设直线与椭圆 C 的交点为 A(x1,y1),B(x2,y2),将直线方程 y=(x-3)代入椭圆方程得+=1,即 x2-3x-8=0,由韦达定理得 x1+x2=3,所以线段 AB 中点的横坐标为=,纵坐标为(-3)...