精品文档---下载后可任意编辑 教材内容本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式. 教学目标 1.知识与技能 (1)理解二次根式的概念. (2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0). (3)掌握·=(a≥0,b≥0),=·;=(a≥0,b>0),=(a≥0,b>0). (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简. (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算. (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简. (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的. 3.情感、态度与价值观 通过本单元的学习培育学生:利用规定准确计算和化简的严谨的科学精神,经过探究二次根式的重要结论,二次根式的乘除规定,进展学生观察、分析、发现问题的能力. 教学重点 1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用. 2.二次根式乘除法的规定及其运用.3.最简二次根式的概念. 4.二次根式的加减运算. 教学难点 1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用. 2.二次根式的乘法、除法的条件限制. 3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分 本单元教学时间约需 11 课时,具体分配如下:16.1 二次根式 3 课时16.2 二次根式的乘法 3 课时16.3 二次根式的加减 3 课时 教学活动、习题课、小结 2 课时16.1 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键 1.重点:形如(a≥0)的式子叫做二次根式的概念; 2.难点与关键:利用“(a≥0)”解决具体问题. 教学过程 一、复习引入 活动 1、填空,完成课本思考 1:,,,√h5活动 2、观察其形式上的共同点,被开方数的共同点,...